scholarly journals Wheat gene pool and its conservation in Nepal

2014 ◽  
Vol 1 (1) ◽  
pp. 39-46
Author(s):  
Bal K Joshi ◽  
Ashok Mudwari ◽  
Madan R Bhatta

Aim This paper explores diversity of wheat gene pool present in the Nepalese bread wheat cultivars and landraces, and discusses their conservation initiatives. Location Nepal. Material and Methods This study is carried out using an extensive literature survey on distribution of landraces and wild relatives of wheat in Nepal. Key findings The results showed that there were 35 improved wheat cultivars, 540 landraces and 10 wild relatives of wheat in Nepal. Mexico, India and Nepal were the countries of origin for 35 cultivars. A total of 89 ancestors of wheat originated from 22 countries were used to develop 35 cultivars. The highest number of ancestors was from India. Ancestors of both aestivum and durum species having winter, spring and intermediate growth habit indicated that these species were of wide gene pool. The genetic erosion in wheat gene pool is the main conservation challenge of landraces due to introduction of improved varieties. Conservation implications Genetic diversity of wheat is indispensible for sustainable wheat production. Therefore, on-farm and ex-situ conservations of cultivars, landraces and wild varieties of wheat and their use in breeding programs are necessary for maintaining existing genetic diversity.    DOI: http://dx.doi.org/10.3126/cs.v1i1.9584   Conservation Science 2013 1(1), 39-46

1970 ◽  
Vol 7 ◽  
pp. 1-10
Author(s):  
BK Joshi ◽  
A Mudwari ◽  
MR Bhatta

Genetic diversity must be maintained and utilized for sustainable agriculture development. Theamount of genetic diversity in the country depends on the number and diversity of the originalancestors involved in the creation of a germplasm pool, wild relatives and existing landraces.The objective of this research was to study the diversity of wheat gene pool present in theNepalese bread wheat cultivars and landraces that could help for developing conservation andutilization strategy effectively. We examined the pedigrees of 35 Nepalese wheat cultivars andsurveyed the literature for distribution of landraces and wild relatives of wheat. Cultivatedlandraces of spring and winter type, wild landraces and diploid species of wheat are found inNepal. There are 35 improved wheat cultivars, 540 landraces and 10 wild relatives of wheat.Crosses between winter and spring wheat gene pools are far more common and offer a newsource of diversity. Mexico, India and Nepal are the origin countries for 35 cultivars. In Nepalfour cultivars were bred and developed using foreign landraces and maximum number ofcultivars was developed in Mexico. Lerma 52, first improved cereal variety to be released in thehistory of cereal breeding in Nepal was released in 1960. A total of 89 ancestors originated in 22different countries were used to develop these cultivars. Highest number of ancestors was fromIndia. Ancestors of both aestivum and durum species having winter, spring and intermediategrowth habit indicated the collection of wide gene pool. Most of the ancestors were aestivum(76.40%) and spring growth habit (57.31%). Modern varieties are replacing the landraces andimproved old varieties resulted in the genetic erosion. Therefore, in situ, on farm and ex situconservations are necessary for maintaining these genetic variations. Unutilization of locallandraces in breeding program may be the major factor that causes to accelerate the geneticerosion. Gene pool from these landraces along with international gene pool could make towardssuccess in developing high yielding cultivars with wide adaptability. In this study, cultivars andlandraces surveyed represent a wide range of variation for different areas of origin andadaptation.Key words: Ancestor; landrace; origin; wheat gene poolDOI: 10.3126/narj.v7i0.1859Nepal Agriculture Research Journal Vol.7 2006 pp.1-10


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1446
Author(s):  
Lorraine Rodriguez-Bonilla ◽  
Karen A. Williams ◽  
Fabian Rodríguez Bonilla ◽  
Daniel Matusinec ◽  
Andrew Maule ◽  
...  

Knowledge of the genetic diversity in populations of crop wild relatives (CWR) can inform effective strategies for their conservation and facilitate utilization to solve agricultural challenges. Two crop wild relatives of the cultivated cranberry are widely distributed in the US. We studied 21 populations of Vaccinium macrocarpon Aiton and 24 populations of Vaccinium oxycoccos L. across much of their native ranges in the US using 32 simple sequence repeat (SSR) markers. We observed high levels of heterozygosity for both species across populations with private alleles ranging from 0 to 26. For V. macrocarpon, we found a total of 613 alleles and high levels of heterozygosity (HO = 0.99, HT = 0.75). We also observed high numbers of alleles (881) and levels of heterozygosity (HO = 0.71, HT = 0.80) in V. oxycoccos (4x). Our genetic analyses confirmed the field identification of a native population of V. macrocarpon on the Okanogan-Wenatchee National Forest in the state of Washington, far outside the previously reported range for the species. Our results will help to inform efforts of the United States Department of Agriculture Agricultural Research Service (USDA-ARS) and the United States Forest Service (USFS) to conserve the most diverse and unique wild cranberry populations through ex situ preservation of germplasm and in situ conservation in designated sites on National Forests.


2012 ◽  
Vol 150 (6) ◽  
pp. 702-716 ◽  
Author(s):  
F. F. FUENTES ◽  
D. BAZILE ◽  
A. BHARGAVA ◽  
E. A. MARTÍNEZ

SUMMARYQuinoa cultivation in Chile presents an ancient and active complex of geographic, climatic, social and cultural interactions that has determined its current biodiversity in the three main growing zones (north, central and south). Importantly, these interactions involve the participation of farmers, whose activities are at the base of seed exchange networks due to their knowledge andin situconservation of genetic diversity. The present study reports how a better understanding of farmers’ seed exchanges and local production practices could impact the genetic structure and diversity of quinoa at national scale in Chile. Using field interviews and characterization of 20 microsatellite genetic markers in a multi-origin set of 34 quinoa accessions representative of Chile and the South American region, the phenetic analysis of germplasm was consistent with the current classification of quinoa ecotypes present in Chile and Andean zone. This allowed the identification of five populations, which were represented by quinoa of Salares (northern Chile), Coastal/Lowlands (central and southern Chile), Highlands (Peru, Bolivia and Argentina) and Inter-Andean Valleys (Ecuador and Colombia). The highly informative quality of the markers used revealed a wide genetic diversity among main growing areas in Chile, which correlated well with natural geographical–edaphic–climatic and social–linguistic context to the expansion of quinoa biodiversity. Additionally, in addition to ancient seed exchanges, this process is still governed by the diverse agricultural practices of Andean farmers. Genetic erosion is considered an imminent risk due to small-scale farming, where the influence of increased migration of people to urban systems and export-driven changes to the agro-ecosystems may further reduce the diversity of quinoa plants in cultivation.


2021 ◽  
Author(s):  
Simon Kallow ◽  
Bart Panis ◽  
Toan Vu Dang ◽  
Tuong Vu Dang ◽  
Janet Paofa ◽  
...  

Background: Conservation of plant genetic resources, including the wild relatives of crops, plays an important and well recognised role in addressing some of the key challenges faced by humanity and the planet including ending hunger and biodiversity loss. However, the genetic diversity and representativeness of ex situ collections, especially that contained in seed collections, is often unknown. This limits meaningful assessments against conservation targets, impairs targeting of future collecting and limits their use. We assessed genetic representation of seed collections compared to source populations for three wild relatives of bananas and plantains. Focal species and sampling regions were Musa acuminata subsp. banksii (Papua New Guinea), M. balbisiana (Viet Nam) and M. maclayi s.l. (Bougainville, Papua New Guinea). We sequenced 445 samples using suites of 16-20 existing and newly developed taxon-specific polymorphic microsatellite markers. Samples of each species were from five populations in a region; 15 leaf samples and 16 seed samples from one infructescence ('bunch') for each population. Results: Allelic richness of seeds compared to populations was 51%, 81% and 93% (M. acuminata, M. balbisiana and M. maclayi respectively). Seed samples represented all common alleles in populations but omitted some rarer alleles. The number of collections required to achieve the 70% target of the Global Strategy for Plant Conservation was species dependent, relating to mating systems. Musa acuminata populations had low heterozygosity and diversity, indicating self-fertilization; many bunches were needed (>15) to represent regional alleles to 70%; over 90% of the alleles from a bunch are included in only two seeds. Musa maclayi was characteristically cross-fertilizing; only three bunches were needed to represent regional alleles; within a bunch, 16 seeds represent alleles. Musa balbisiana, considered cross-fertilized, had low genetic diversity; seeds of four bunches are needed to represent regional alleles; only two seeds represent alleles in a bunch. Conclusions: We demonstrate empirical measurement of representation of genetic material in seeds collections in ex situ conservation towards conservation targets. Species mating systems profoundly affected genetic representation in seed collections and therefore should be a primary consideration to maximize genetic representation. Results are applicable to sampling strategies for other wild species.


2021 ◽  
Author(s):  
Marco Canella ◽  
Nicola M.G. Ardenghi ◽  
Jonas V. Müller ◽  
Graziano Rossi ◽  
Filippo Guzzon

Abstract Northern Italy is an area particularly suitable for the cultivation of different crops. It used to be characterized by a high agrobiodiversity. However, it is estimated that over the last decades, this area experienced a genetic erosion of more than 95%, resulting in the loss of many traditional plant genetic resources (PGR). Nevertheless, recent surveys found an unexpectedly high agrobiodiversity which remains. The presented study aims to provide a complete overview of plant agrobiodiversity (in terms of crop landraces, old cultivars and neglected crops) in northern Italy using a mixed approach of literature research and ethnobotanical field surveys. This paper is a fundamental step towards putting in place successful on farm and ex situ conservation measures in the study area. 811 entities were found, of which 27 were identified as neglected crops, 377 as landraces (plus 124 doubtful landraces) and 99 as old cultivars (plus 184 doubtful old cultivars). 248 entities were here recorded for the first time through field surveys. It clearly emerges that by using an ethnobotanical approach, several PGR can still be found in the study area especially in small farms and home gardens. We describe hotspots of crop diversity and areas in which there is still a lack of knowledge of local agrobiodiversity. Only 43% of the PGR recorded are conserved long-term in seed banks, underlying the fact that great efforts are needed to ensure the ex situ conservation of PGR in northern Italy. Careful interventions are needed to enhance the on-farm conservation status of the crop diversity reported here by enhancing its demand and its accessibility.


2011 ◽  
Vol 39 (No. 4) ◽  
pp. 99-108 ◽  
Author(s):  
Z. Stehno ◽  
L. Dotlačil ◽  
I. Faberová ◽  
S. Martynov ◽  
T. Dobrotvorskaya

Using genealogical analysis, the genetic diversity in winter wheat cultivars registered and grown in the formerCzechoslovakia and the presentCzech Republic during 1919–2001 was studied. The strong increase of the diversity level since the 1970-s is based on the wide use in breeding programs of foreign materials, most of which originated in countries of Western, Central andEastern Europe. Simultaneously a genetic erosion in the released cultivars occurred; from the 1930-s to the 1970-s, a significant number of original local ancestors was lost. The modern cultivars listed in the Czech National List of Varieties in 2000–2001 can be distinguished into clusters. The overwhelming majority of cultivars belong to two clusters of similar extent. In one of them the ancestors fromWestern Europe can be found, while in the second cluster ancestors fromEastern Europe dominate, mainly through cvs. Mironovskaya 808 and Bezostaya 1. An index of similarity of modern cultivars grown in theCzech Republic is approximately equal to the average between half- and quarter-sibs. Consequently, it can be concluded that the genetic diversity in winter wheat cultivars presently grown in theCzech   Republic has increased in the last decades and is considered as acceptable.  


Euphytica ◽  
2006 ◽  
Vol 155 (1-2) ◽  
pp. 249-258 ◽  
Author(s):  
Jiancheng Liu ◽  
Like Liu ◽  
Ning Hou ◽  
Aimin Zhang ◽  
Chunguang Liu

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 561
Author(s):  
Emma Suzuki Spence ◽  
Jeremie B. Fant ◽  
Oliver Gailing ◽  
M. Patrick Griffith ◽  
Kayri Havens ◽  
...  

Genetic diversity is a critical resource for species’ survival during times of environmental change. Conserving and sustainably managing genetic diversity requires understanding the distribution and amount of genetic diversity (in situ and ex situ) across multiple species. This paper focuses on three emblematic and IUCN Red List threatened oaks (Quercus, Fagaceae), a highly speciose tree genus that contains numerous rare species and poses challenges for ex situ conservation. We compare the genetic diversity of three rare oak species—Quercus georgiana, Q. oglethorpensis, and Q. boyntonii—to common oaks; investigate the correlation of range size, population size, and the abiotic environment with genetic diversity within and among populations in situ; and test how well genetic diversity preserved in botanic gardens correlates with geographic range size. Our main findings are: (1) these three rare species generally have lower genetic diversity than more abundant oaks; (2) in some cases, small population size and geographic range correlate with genetic diversity and differentiation; and (3) genetic diversity currently protected in botanic gardens is inadequately predicted by geographic range size and number of samples preserved, suggesting non-random sampling of populations for conservation collections. Our results highlight that most populations of these three rare oaks have managed to avoid severe genetic erosion, but their small size will likely necessitate genetic management going forward.


2020 ◽  
Author(s):  
Liu Shuo ◽  
Decroocq Stephane ◽  
Harte Elodie ◽  
Tricon David ◽  
Chague Aurelie ◽  
...  

AbstractIn-depth characterization of the genetic diversity and population structure of wild relatives of crops is of paramount importance for genetic improvement and biodiversity conservation, and is particularly crucial when the wild relatives of crops are endangered. In this study, we therefore sampled the Alpine plum (Briançon apricot) Prunus brigantina Vill. across its natural distribution in the French Alps, where its populations are severely fragmented and its population size strongly impacted by humans. We analysed 71 wild P. brigantina samples with 34 nuclear markers and studied their genetic diversity and population structure, with the aim to inform in situ conservation measures and build a core collection for long-term ex-situ conservation. We also examined the genetic relationships of P. brigantina with other species in the Prunophora subgenus, encompassing the Prunus (Eurasian plums), Prunocerasus (North-American plums) and Armeniaca (apricots) sections, to check its current taxonomy. We detected a moderate genetic diversity in P. brigantina and a Bayesian model-based clustering approach revealed the existence of three genetically differentiated clusters, endemic to three geographical regions in the Alps, which will be important for in situ conservation measures. Based on genetic diversity and population structure analyses, a subset of 36 accessions were selected for ex-situ conservation in a core collection that encompasses the whole detected P. brigantina allelic diversity. Using a dataset of cultivated apricots and wild cherry plums (P. cerasifera) genotyped with the same markers, we detected gene flow neither with European P. armeniaca cultivars nor with diploid plums. In contrast with previous studies, dendrograms and networks placed P. brigantina closer to Armeniaca species than to Prunus species. Our results thus confirm the classification of P. brigantina within the Armeniaca section; it also illustrates the importance of the sampling size and design in phylogenetic studies.


Sign in / Sign up

Export Citation Format

Share Document