scholarly journals Genetic diversity and population structure analyses in the Alpine plum (Prunus brigantina Vill.) confirm its affiliation to the Armeniaca section

2020 ◽  
Author(s):  
Liu Shuo ◽  
Decroocq Stephane ◽  
Harte Elodie ◽  
Tricon David ◽  
Chague Aurelie ◽  
...  

AbstractIn-depth characterization of the genetic diversity and population structure of wild relatives of crops is of paramount importance for genetic improvement and biodiversity conservation, and is particularly crucial when the wild relatives of crops are endangered. In this study, we therefore sampled the Alpine plum (Briançon apricot) Prunus brigantina Vill. across its natural distribution in the French Alps, where its populations are severely fragmented and its population size strongly impacted by humans. We analysed 71 wild P. brigantina samples with 34 nuclear markers and studied their genetic diversity and population structure, with the aim to inform in situ conservation measures and build a core collection for long-term ex-situ conservation. We also examined the genetic relationships of P. brigantina with other species in the Prunophora subgenus, encompassing the Prunus (Eurasian plums), Prunocerasus (North-American plums) and Armeniaca (apricots) sections, to check its current taxonomy. We detected a moderate genetic diversity in P. brigantina and a Bayesian model-based clustering approach revealed the existence of three genetically differentiated clusters, endemic to three geographical regions in the Alps, which will be important for in situ conservation measures. Based on genetic diversity and population structure analyses, a subset of 36 accessions were selected for ex-situ conservation in a core collection that encompasses the whole detected P. brigantina allelic diversity. Using a dataset of cultivated apricots and wild cherry plums (P. cerasifera) genotyped with the same markers, we detected gene flow neither with European P. armeniaca cultivars nor with diploid plums. In contrast with previous studies, dendrograms and networks placed P. brigantina closer to Armeniaca species than to Prunus species. Our results thus confirm the classification of P. brigantina within the Armeniaca section; it also illustrates the importance of the sampling size and design in phylogenetic studies.

2004 ◽  
Vol 70 (12) ◽  
pp. 7210-7219 ◽  
Author(s):  
Blanca de las Rivas ◽  
Ángela Marcobal ◽  
Rosario Muñoz

ABSTRACT Oenococcus oeni is the organism of choice for promoting malolactic fermentation in wine. The population biology of O. oeni is poorly understood and remains unclear. For a better understanding of the mode of genetic variation within this species, we investigated by using multilocus sequence typing (MLST) with the gyrB, pgm, ddl, recP, and mleA genes the genetic diversity and genetic relationships among 18 O. oeni strains isolated in various years from wines of the United States, France, Germany, Spain, and Italy. These strains have also been characterized by ribotyping and restriction fragment length polymorphism (RFLP) analysis of the PCR-amplified 16S-23S rRNA gene intergenic spacer region (ISR). Ribotyping grouped the strains into two groups; however, the RFLP analysis of the ISRs showed no differences in the strains analyzed. In contrast, MLST in oenococci had a good discriminatory ability, and we have found a higher genetic diversity than indicated by ribotyping analysis. All sequence types were represented by a single strain, and all the strains could be distinguished from each other because they had unique combinations of alleles. Strains assumed to be identical showed the same sequence type. Phylogenetic analyses indicated a panmictic population structure in O. oeni. Sequences were analyzed for evidence of recombination by split decomposition analysis and analysis of clustered polymorphisms. All results indicated that recombination plays a major role in creating the genetic heterogeneity of O. oeni. A low standardized index of association value indicated that the O. oeni genes analyzed are close to linkage equilibrium. This study constitutes the first step in the development of an MLST method for O. oeni and the first example of the application of MLST to a nonpathogenic food production bacteria.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 752
Author(s):  
Kyung Jun Lee ◽  
Raveendar Sebastin ◽  
Gyu-Taek Cho ◽  
Munsup Yoon ◽  
Gi-An Lee ◽  
...  

Potato (Solanum tuberosum L.) is an important staple food and economic crop in many countries. It is of critical importance to understand the genetic diversity and population structure for effective collection, conservation, and utilization of potato germplasm. Thus, the objective of the present study was to investigate the genetic diversity and population structure of potato germplasm conserved in the National Agrobiodiversity Center (NAC) of South Korea to provide basic data for future preservation and breeding of potato genetic resources. A total of 24 simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 482 potato accessions. A total of 257 alleles were detected, with an average of 10.71 alleles per locus. Analysis of molecular variance showed that 97% of allelic diversity was attributed to individual accessions within the population, while only 3% was distributed among populations. Results of genetic structure analysis based on STRUCTURE and discriminant analysis of principal components revealed that 482 potato accessions could be divided into two main subpopulations. Accessions of subpopulation 1 mainly belonged to cultivars and breeding lines. Accessions of subpopulations 2 basically corresponded to wild relatives of potatoes. Results of this study provide useful information for potato improvement and conservation programs, although further studies are needed for a more accurate evaluation of genetic diversity and phenotypic traits of potatoes.


Akademos ◽  
2021 ◽  
pp. 61-69
Author(s):  
Maria Duca ◽  
◽  
Ina Bivol ◽  
Ana Mutu ◽  
Steliana Clapco ◽  
...  

Genetic diversity within a population is reflected by variations in genetic material among individuals and can manifest at the phenotypic level through new characters or traits. The emergence of a large number of O. cumana races in a short period of time demonstrates that there are higher genetic variability in populations and a high ability to adapt in the face of environmental conditions. The aim of the research presented in this article was to study the intraand interpopulation genetic diversity and genetic relationships between individuals of three populations of O. cumana from different geographical regions of the People’s Republic of China based on molecular markers (ISSR and SSR). The high intrapopulation genetic variability calculated on the basis of the allelic diversity parameters and specific genetic diversity coefficients was revealed by SSR markers while as for the ISSR primers a high degree of genetic variations was found at the interpopulation level. UPGMA clustering and principal component analysis performed according to both sets of molecular markers allowed to devide all genotypes into 5 major groups for the degree of dissimilarity and level of aggression. This study is of interest in understanding the population genetic structure of the parasitic species of O. cumana from China and could contribute to the development of pathogen control durable strategies and effective sunflower breeding programs to broomrape resistance.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9897
Author(s):  
Leta Dickinson ◽  
Hilary Noble ◽  
Elliot Gardner ◽  
Aida Shafreena Ahmad Puad ◽  
Wan Nuur Fatiha Wan Zakaria ◽  
...  

Limestone karsts of Southeast Asia can harbor high levels of endemism, but are highly fragmented, increasingly threatened, and their biodiversity is often poorly studied. This is true of the Padawan Limestone Area of Sarawak, Malaysia, home to the endemic Artocarpus annulatus, the closest known wild relative of two important and underutilized fruit tree crops, jackfruit (A. heterophyllus) and cempedak (A. integer). Identifying and conserving crop wild relatives is critical for the conservation of crop genetic diversity and breeding. In 2016 and 2017, five A. annulatus populations were located, and leaf material, locality information, and demographic data were collected. Microsatellite markers were used to assess genetic diversity and structure among populations, and to compare levels of genetic diversity to closely related congeneric species. Results indicate no evidence of inbreeding in A. annulatus, and there is no genetic structure among the five populations. However, diversity measures trended lower in seedlings compared to mature trees, suggesting allelic diversity may be under threat in the youngest generation of plants. Also, genetic diversity is lower in A. annulatus compared to closely related congeners. The present study provides a baseline estimate of A. annulatus genetic diversity that can be used for comparison in future studies and to other species in the unique limestone karst ecosystems. Considerations for in situ and ex situ conservation approaches are discussed.


2018 ◽  
Vol 65 (3-4) ◽  
pp. 161-174
Author(s):  
Hanan Sela ◽  
Smadar Ezrati ◽  
Pablo D. Olivera

Israel is rich in wheat wild relatives. Some of the species have a restricted geographic distribution, grow in small populations, and are subjected to habitat fragmentation. To better conserve and exploit these species there is a need to characterize the genetic structure of ex situ collections. The population structure and genetic diversity of three wheat wild relatives from the genus Aegilops were studied. Collections of the species Ae. longissima (23 accessions), Ae. sharonensis (105 accessions) and Ae. speltoides (157 accessions) from the Institute for Cereal Crops Improvement (ICCI), Tel-Aviv University were genotyped using genotyping by sequencing (GBS) technique. Principal Component Analysis (PCA) revealed different and similar diversity patterns among the species. All species had differences between northern and southern populations, however, in Ae. sharonensis there was a more significant component differentiating western and eastern populations. Some of the southeast accessions of Ae. sharonensis clustered together with the northern - coastal Ae. longissima accessions away from the rest of the Ae. longissima and Ae. sharonensis accessions. Ae. sharonensis collection has shown much more population differentiation than Ae. speltoides collection while in Ae. speltoides the total genetic diversity within populations diversity was higher. Ae. sharonensis population structure was more correlated with geographic distance while Ae. speltoides population structure has shown less structured populations and less correlation with geographic distance. Ae. sharonensis population structure was also correlated with soil type and humidity while in Ae. speltoides northern collection no correlation with the environment was found. The evolutionary and conservation perspectives of these finding are discussed.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 638
Author(s):  
Marcelo B. Medeiros ◽  
José F. M. Valls ◽  
Aluana G. Abreu ◽  
Gustavo Heiden ◽  
Suelma Ribeiro-Silva ◽  
...  

This study presents the status of ex situ and in situ conservation for the crop wild relatives of rice, potato, sweet potato, and finger millet in Brazil, and the subsequent germplasm collection expeditions. This research is part of a global initiative entitled “Adapting Agriculture to Climate Change: Collecting, Protecting, and Preparing Crop Wild Relatives” supported by the Global Crop Diversity Trust. Species of the primary, secondary, and tertiary gene pools with occurrences reported in Brazil were included: Oryza alta Swallen, O. grandiglumis (Döll) Prod., O. latifolia Desv., O. glumaepatula Steud., Eleusine tristachya (Lam.) Lam., E. indica (L.) Gaertn., Solanum commersonii Dunal, S. chacoense Bitter, Ipomoea grandifolia (Dammer) O’Donell, I. ramosissima (Poir.) Choisy, I. tiliacea (Willd.) Choisy, I. triloba L., and I. cynanchifolia Meisn. The status of the ex situ and in situ conservation of each taxon was assessed using the gap analysis methodology, and the results were used to plan 16 germplasm collection expeditions. Seeds of the collected material were evaluated for viability, and the protocols for seed germination and cryopreservation were tested. The final conservation score, resulting from the gap analysis and including the average of the ex situ and in situ scores, resulted in a classification of medium priority of conservation for all the species, with the exception of I. grandifolia (high priority). The total accessions collected (174) almost doubled the total accessions of these crop wild relatives incorporated in Embrapa’s ex situ conservation system prior to 2015. In addition, accessions for practically absent species were collected for the ex situ conservation system, such as Ipomoea species, Eleusine indica, and Solanum chacoense. The methods used for dormancy breaking and low temperature conservation for the Oryza, Eleusine, and Ipomoea species were promising for the incorporation of accessions in the respective gene banks. The results show the importance of efforts to collect and conserve ex situ crop wild relatives in Brazil based on previous gap analysis. The complementarity with the in situ strategy also appears to be very promising in the country.


Author(s):  
Wiguna Rahman ◽  
Joana Magos Brehm ◽  
Nigel Maxted ◽  
Jade Phillips ◽  
Aremi R. Contreras-Toledo ◽  
...  

AbstractConservation programmes are always limited by available resources. Careful planning is therefore required to increase the efficiency of conservation and gap analysis can be used for this purpose. This method was used to assess the representativeness of current ex situ and in situ conservation actions of 234 priority crop wild relatives (CWR) in Indonesia. This analysis also included species distribution modelling, the creation of an ecogeographical land characterization map, and a complementarity analysis to identify priorities area for in situ conservation and for further collecting of ex situ conservation programmes. The results show that both current ex situ and in situ conservation actions are insufficient. Sixty-six percent of priority CWRs have no recorded ex situ collections. Eighty CWRs with ex situ collections are still under-represented in the national genebanks and 65 CWRs have no presence records within the existing protected area network although 60 are predicted to exist in several protected areas according to their potential distribution models. The complementarity analysis shows that a minimum of 61 complementary grid areas (complementary based on grid cells) are required to conserve all priority taxa and 40 complementary protected areas (complementary based on existing protected areas) are required to conserve those with known populations within the existing in situ protected area network. The top ten of complementary protected areas are proposed as the initial areas for the development of CWR genetic reserves network in Indonesia. It is recommended to enhanced coordination between ex situ and in situ conservation stakeholders for sustaining the long term conservation of CWR in Indonesia. Implementation of the research recommendations will provide for the first time an effective conservation planning of Indonesia’s CWR diversity and will significantly enhance the country’s food and nutritional security.


2009 ◽  
Vol 90 (4) ◽  
pp. 1025-1034 ◽  
Author(s):  
Tai-Yun Wei ◽  
Jin-Guang Yang ◽  
Fu-Long Liao ◽  
Fang-Luan Gao ◽  
Lian-Ming Lu ◽  
...  

Rice stripe virus (RSV) is one of the most economically important pathogens of rice and is repeatedly epidemic in China, Japan and Korea. The most recent outbreak of RSV in eastern China in 2000 caused significant losses and raised serious concerns. In this paper, we provide a genotyping profile of RSV field isolates and describe the population structure of RSV in China, based on the nucleotide sequences of isolates collected from different geographical regions during 1997–2004. RSV isolates could be divided into two or three subtypes, depending on which gene was analysed. The genetic distances between subtypes range from 0.050 to 0.067. The population from eastern China is composed only of subtype I/IB isolates. In contrast, the population from Yunnan province (southwest China) is composed mainly of subtype II isolates, but also contains a small proportion of subtype I/IB isolates and subtype IA isolates. However, subpopulations collected from different districts in eastern China or Yunnan province are not genetically differentiated and show frequent gene flow. RSV genes were found to be under strong negative selection. Our data suggest that the most recent outbreak of RSV in eastern China was not due to the invasion of new RSV subtype(s). The evolutionary processes contributing to the observed genetic diversity and population structure are discussed.


2021 ◽  
Author(s):  
Varun Hiremath ◽  
Kanwar Pal Singh ◽  
Neelu Jain ◽  
Kishan Swaroop ◽  
Pradeep Kumar Jain ◽  
...  

Abstract Genetic diversity and structure analysis using molecular markers is necessary for efficient utilization and sustainable management of gladiolus germplasm. Genetic analysis of gladiolus germplasm using SSR markers is largely missing due to scarce genomic information. In the present investigation, we report 66.66% cross transferability of Gladiolus palustris SSRs whereas 48% of Iris EST-SSRs were cross transferable across the gladiolus genotypes used in the study. A total of 17 highly polymorphic SSRs revealed a total 58 polymorphic loci ranging from two to six in each locus with an average of 3.41 alleles per marker. PIC values ranged from 0.11 to 0.71 with an average value of 0.48. Four SSRs were selectively neutral based on Ewens-Watterson test. Analysis of genetic structure of 84 gladiolus genotypes divided whole germplasm into two subpopulations. 35 genotypes were assigned to subpopulation 1 whereas 37 to subpopulation 2 and rest of the genotypes recorded as admixture. Analysis of molecular variance indicated maximum variance (53.59%) among individuals within subpopulations whereas 36.55% of variation observed among individuals within total population. Least variation (9.86%) was noticed between two subpopulations. Moderate (FST = 0.10) genetic differentiation of two subpopulations was observed. Grouping pattern of population structure was consistent with UPGMA dendrogram based on simple matching dissimilarity coefficient (ranged from 01.6 to 0.89) and PCoA. Genetic relationships assessed among the genotypes of respective clusters assist the breeders in selecting desirable parents for crossing. SSR markers from present study can be utilized for cultivar identification, conservation and sustainable utilization of gladiolus genotypes for crop improvement.


AGROFOR ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zoran MALETIC

Recently, highly productive breeds of various species of domestic animals have been used in livestock production, which has resulted in the destruction of indigenous breeds of domestic animals around the world, even in our area. This is the first reason why indigenous races and strains have been endangered. Another reason is that domestic, indigenous breeds were crossed with specialized breeds, which were imported, and in that way their genetic diversity was negatively affected. Resistance is lost, adaptation to the conditions in which they were created, the ability to survive in nature. Indigenous breeds of different species of domestic animals, which are recognized in the Republic of Srpska (BiH) are gatačko cattle and buša (cattle), Vlašić pramenka, Podveleška pramenka, Kupres pramenka (sheep), domestic Balkan horned goat (goats), Bosnian mountain horse (horses), mangulica (pigs) and pogrmuša hen or živičarka hen (poultry). By acceding to international conventions, BiH /Republic of Srpska has committed itself to establishing a system of measures that will enable the conservation of biological diversity and the protection of indigenous and endangered breeds of domestic animals. The choice of a strategy for the conservation of diversity, the establishment of an adequate conservation scheme, and the implementation of a conservation strategy are some of the key elements of any process for the conservation of genetic diversity. Preservation of autochthonous and protected breeds of domestic animals is possible through preservation in the original environment (in situ) and preservation outside the original environment (ex situ). There is a possibility of combining these models of conservation of animal genetic resources.


Sign in / Sign up

Export Citation Format

Share Document