scholarly journals Nanoscale Measurement of Surface Roughness and the existing Surface Forces of Aluminum by AFM

2011 ◽  
Vol 2 ◽  
pp. 76-79
Author(s):  
Purna B Pun ◽  
Shobha K Lamichhane

The surface contamination affects Atomic Force Microscope (AFM) performance. Thermal agitation during mapping doping, thermal oxidation, annealing impurities and crystal defects promotes the roughness; various kinds of forces on the surface can be detected by the interaction between tip of cantilever and sample. This interaction not only help us to understand the characteristics and morphology of the sample but also useful to measure the surface force of the aluminum sample too.Key words: Atomic Force Microscope (AFM) performance; Thermal oxidation; Annealing impurities; Crystal defectsThe Himalayan Physics Vol.2, No.2, May, 2011Page: 76-79Uploaded Date: 1 August, 2011

Author(s):  
Arvind Narayanaswamy ◽  
Sheng Shen ◽  
Gang Chen

Thermal radiative transfer between objects as well as near-field forces such as van der Waals or Casimir forces have their origins in the fluctuations of the electrodynamic field. Near-field radiative transfer between two objects can be enhanced by a few order of magnitude compared to the far-field radiative transfer that can be described by Planck’s theory of blackbody radiation and Kirchoff’s laws. Despite this common origin, experimental techniques of measuring near-field forces (using the surface force apparatus and the atomic force microscope) are more sophisticated than techniques of measuring near-field radiative transfer. In this work, we present an ultra-sensitive experimental technique of measuring near-field using a bi-material atomic force microscope cantilever as the thermal sensor. Just as measurements of near-field forces results in a “force distance curve”, measurement of near-field radiative transfer results in a “heat transfer-distance” curve. Results from the measurement of near-field radiative transfer will be presented.


2011 ◽  
Vol 88-89 ◽  
pp. 34-37
Author(s):  
Kuai Ji Cai

The relationship of the friction coefficient and the MTC were discussed, and the MTC and its effects on surface roughness were a theoretical analysised and experimental verification by AFM (atomic force microscope). The results show that the theoretical MTC tends to be minimal value then before the adhering effect to reach remarkable. Appropriate adjustments cutting parameters, the cutting process can always micro-cutting phase to reach the steady-thin chip, and no plowing phenomenon. So the surface residues highly were reduced and higher surface quality was achieved.


2019 ◽  
Vol 56 ◽  
pp. 321-329 ◽  
Author(s):  
Ichiko Misumi ◽  
Kentaro Sugawara ◽  
Ryosuke Kizu ◽  
Akiko Hirai ◽  
Satoshi Gonda

1994 ◽  
Vol 356 ◽  
Author(s):  
Laurence Gea ◽  
Jean-Luc Loubet ◽  
Roger Brenier ◽  
Paul Thevenard

Abstract(001) MgO single crystals were implanted with 150 keV krypton ions (Kr+) at a fluence of 5.1016 ions.cm-2 . The implanted surface, observed with an Atomic Force Microscope (AFM) exhibits striking features that can be described as undulations with a wavelength of 0.5 [μm. We correlate these features to the decrease in density and the stresses induced by the implantation damage. As a matter of fact, a model of surface instabilities provides a relationship between the wavelength of the ondulations and internal stresses. Using this model, implantation stresses are calculated to 2.2 GPa. This is in good agreement with the value of 2 GPa obtained with the help of the microindentation technique and the literature data. Some effects of an ionizing post-irradiation on stress and surface roughness are described.


2010 ◽  
Vol 40 (5) ◽  
pp. 294 ◽  
Author(s):  
Ki-Ho Park ◽  
Hyun-Joo Yoon ◽  
Su-Jung Kim ◽  
Gi-Ja Lee ◽  
Hun-Kuk Park ◽  
...  

1999 ◽  
Vol 31 (1-6) ◽  
pp. 203-208 ◽  
Author(s):  
N. Yasuda ◽  
M. Yamamoto ◽  
K. Amemiya ◽  
H. Takahashi ◽  
A. Kyan ◽  
...  

Composites ◽  
1995 ◽  
Vol 26 (9) ◽  
pp. 619-629 ◽  
Author(s):  
Thomas L. Warren ◽  
Dusan Krajcinovic ◽  
Arunava Majumdar

Sign in / Sign up

Export Citation Format

Share Document