scholarly journals Geochemical-isotopic characteristics and K-Ar ages of magmatic rocks from Hundar valley, Shyok Suture Zone, Ladakh

1970 ◽  
Vol 5 (7) ◽  
pp. 18
Author(s):  
T Ahmad ◽  
S Sivaprabha ◽  
S Balakrishnan ◽  
NX Thanh ◽  
T Itaya ◽  
...  

DOI = 10.3126/hjs.v5i7.1229 Himalayan Journal of Sciences Vol.5(7) (Special Issue) 2008 p.18

2008 ◽  
Vol 5 (7) ◽  
pp. 113
Author(s):  
Ram Awatar

DOI = 10.3126/hjs.v5i7.1302 Himalayan Journal of Sciences Vol.5(7) (Special Issue) 2008 p.113


2017 ◽  
Vol 91 (s1) ◽  
pp. 45-45
Author(s):  
Fahui XIONG ◽  
Jingsui YANG ◽  
Paul T. ROBINSON ◽  
Jian GAO ◽  
Lan ZHANG ◽  
...  

2008 ◽  
Vol 2 (4) ◽  
pp. 112 ◽  
Author(s):  
Angel On Kee Chan ◽  
Jonathan C Aitchison ◽  
Bandengzhu Bandengzhu ◽  
Lan Hui

Himalayan Journal of Sciences Vol.2(4) Special Issue 2004 pp. 112


1970 ◽  
Vol 5 (7) ◽  
pp. 63
Author(s):  
Réjean Hébert ◽  
Lesage Guillaume ◽  
Bezard Rachel ◽  
Carl Guilmette ◽  
Émilie Bédard ◽  
...  

DOI = 10.3126/hjs.v5i7.1265 Himalayan Journal of Sciences Vol.5(7) (Special Issue) 2008 p.63


2019 ◽  
Vol 89 (10) ◽  
pp. 1039-1054 ◽  
Author(s):  
Zhicai Zhu ◽  
Qingguo Zhai ◽  
Peiyuan Hu ◽  
Sunlin Chung ◽  
Yue Tang ◽  
...  

ABSTRACT The closure of the Bangong–Nujiang Tethyan Ocean (BNTO) and consequent Lhasa–Qiangtang collision is vital to reasonably understanding the early tectonic history of the Tibetan Plateau before the India-Eurasia collision. The timing of the Lhasa–Qiangtang collision was mainly constrained by the ophiolite and magmatic rocks in previous studies, with only limited constraints from the sedimentary rocks within and adjacent to the Bangong–Nujiang suture zone. In the middle segment of the Bangong–Nujiang suture zone, the Duoni Formation, consisting of a fluvial delta sequence with minor andesite interlayers, was originally defined as the Late Cretaceous Jingzhushan Formation and interpreted as the products of the Lhasa–Qiangtang collision during the Late Cretaceous. Our new zircon U-Pb data from two samples of andesite interlayers demonstrate that it was deposited during the latest Early Cretaceous (ca. 113 Ma) rather than Late Cretaceous. Systemic studies on the sandstone detrital model, heavy-mineral assemblage, and clasts of conglomerate demonstrate a mixed source of both Lhasa and Qiangtang terranes and ophiolite complex. Clasts of conglomerate contain abundant angular peridotite, gabbro, basalt, chert, andesite, and granite, and minor quartzite and gneiss clasts also exist. Sandstones of the Duoni Formation are dominated by feldspathic–lithic graywacke (Qt25F14L61 and Qm13F14L73), indicative of a mixture of continental-arc and recycled-orogen source origin. Detrital minerals of chromite, clinopyroxene, epidote, and hornblende in sandstone also indicate an origin of ultramafic and mafic rocks, while garnets indicate a metamorphosed source. Paleocurrent data demonstrate bidirectional (southward and northward) source origins. Thus, we suggest that the deposition of the Duoni Formation took place in the processes of the Lhasa–Qiangtang collision during the latest Early Cretaceous (∼ 113 Ma), and the BNTO had been closed by this time.


Lithos ◽  
2022 ◽  
pp. 106594
Author(s):  
S. Sivaprabha ◽  
Irfan M. Bhat ◽  
T. Ahmad ◽  
T. Tanaka ◽  
S. Balakrishnan ◽  
...  

2018 ◽  
Vol 483 (1) ◽  
pp. 183-213 ◽  
Author(s):  
Patrick J. O'Brien

AbstractHimalayan high-pressure metamorphic rocks are restricted to three environments: the suture zone; close to the suture zone; and (mostly) far (>100 km) from the suture zone. In the NW Himalaya and South Tibet, Cretaceous-age blueschists (glaucophane-, lawsonite- or carpholite-bearing schists) formed in the accretionary wedge of the subducting Neo-Tethys. Microdiamond and associated phases from suture-zone ophiolites (Luobusa and Nidar) are, however, unrelated to Himalayan subduction–collision processes. Deeply subducted and rapidly exhumed Indian Plate basement and cover rocks directly adjacent to the suture zone enclose eclogites of Eocene age, some coesite-bearing (Kaghan/Neelum and Tso Morari), formed from Permian Panjal Trap, continental-type, basaltic magmatic rocks. Eclogites with a granulite-facies overprint, yielding Oligocene–Miocene ages, occur in the anatectic cordierite ± sillimanite-grade Indian Plate mostly significantly south of the suture zone (Kharta/Ama Drime/Arun, north Sikkim and NW Bhutan) but also directly at the suture zone at Namche Barwa. The sequence carpholite-, coesite-, kyanite- and cordierite-bearing rocks of these different units demonstrates the transition from oceanic subduction to continental collision via continental subduction. The granulitized eclogites in anatectic gneisses preserve evidence of former thick crust as in other wide hot orogens, such as the European Variscides.


2020 ◽  
Author(s):  
Petra Schneider ◽  
Dražen Balen

<p>The Late Cretaceous magmatic rocks within the southwestern part of the Pannonian Basin basement (Croatia) occur in two areas: Voćin volcanic mass (VVM) at the northwestern part of Mt. Papuk (near town of Voćin, covering the area of ~10km<sup>2</sup>) and volcanic mass of Mt. Požeška Gora (PVM, area of ~30 km<sup>2</sup>). Both volcanic masses consist of basalts and rhyolites, and in lesser extent of pyroclastic material. Granite can be found it the PVM. Interconnection of this two masses and Late Cretaceous ages have been proposed based on the petrography and mineralogical features of previously studied samples and rather arguable data: K-Ar dating on basalts from VVM (~73−52 Ma) and Rb-Sr isochron age on granite and rhyolite from PVM (~72 Ma). The age has been recently refined with the zircon LA-ICP-MS age dating (~82 Ma), but the magma source of this bimodal formation, geotectonic position, setting and its regional importance still have not been explained in detail.</p><p>In order to conduct preliminary research, two localities with acid effusive rocks were sampled from the VVM (Rupnica geosite and Trešnjevica quarry), and three more from PVM (near the village of Vesela, Pakao Creek and the granite from quarry near the village of Gradski Vrhovci).</p><p>Acid rocks are characterized by a highly siliceous composition (up to 75 wt.% SiO<sub>2</sub>), enrichment in alkalies (high-K calc-alkaline towards to shoshonite series) and aluminium (peraluminous affinity), followed by high FeO<sub>T</sub>/(FeO<sub>T</sub>+MgO) ratios matching ferroan magmas. They classify as rhyolites or alkali-rhyolites/granite. Microelements including REE show that studied rocks have characteristics of A<sub>2</sub>-type of post-collisional/post-orogenic acid rocks, most common A-type of rocks formed during rifting caused by extension and thinning of continental crust. According to geotectonic classification diagrams, rocks from PVM show geochemical signature of volcanic arc, while VVM shows signature of within plate environment.</p><p>External zircon morphology seems to be uniform with prevailing J3−J5-type for rhyolites and D-type for granite and with average ratio of 2.2:1. Those types are characteristic for the high-temperature magmas (confirmed with the calculated Zr-saturation temperature of 850−930°C) originating from the lower crust or even upper mantle. Inclusions of hematite, F-apatite and anatase have been detected with Raman spectrometry in zircon from all samples, with the most significant findings of kumdykolite and kokchetavite inclusions detected in samples from Vesela and Gradski Vrhovci. Latter inclusions are metastable phases crystallized from enclosed melt and are indicators of a rapid cooling of the host magma.</p><p>According to the results presented here, acid rocks show rather uniform geochemistry, which speaks in favor of the early ideas of the unique magmatic complex, although today at the surface they are separated by ~35 km in distance. Those rocks show potential to be of great regional importance bearing new information about the evolution in the Late Cretaceous in the area of Sava Zone, a suture zone between Tisia Mega-Unit (European plate) and Adria microplate, which spatially and temporally marks the closure of the Neotethys Ocean.</p><p>Support by the Croatian Science Foundation (IP-2014-09-9541) is acknowledged.</p>


2020 ◽  
Author(s):  
M. Francisco Pereira ◽  
Cristina Gama ◽  
Ícaro Dias da Silva ◽  
José B. Silva ◽  
Mandy Hofmann ◽  
...  

Abstract. Carboniferous siliciclastic and silicic magmatic rocks from the Santa Susana-São Cristovão region contain valuable information regarding the timing of synorogenic processes in SW Iberia. In this region of the Ossa-Morena Zone (OMZ), Late Carboniferous terrigenous strata (i.e. the Santa Susana Formation) unconformably overlie Early Carboniferous marine siliciclastic deposits alternating with volcanic rocks (i.e. the Toca da Moura volcano-sedimentary complex). Lying below this intra-Carboniferous unconformity, the Toca da Moura volcano-sedimentary complex is intruded and overlain by the Baleizão porphyry. Original SHRIMP and LA-ICP-MS U-Pb zircon are presented in this paper, providing chronostratigraphic and provenance constraints, since available geochronological information is scarce and only biostratigraphic ages are currently available for the Santa Susana-São Cristovão region. Our findings and the currently-available detrital zircon ages from Paleozoic terranes of SW Iberia (Pulo do Lobo Zone- PLZ, South-Portuguese Zone- SPZ, and OMZ), were jointly analyzed using the K-S test and MDS diagrams to investigate provenance. The marine deposition is constrained to the age interval of c. 335–331 Ma (Visean) by new U-Pb data for silicic tuffs from the Toca da Moura volcano-sedimentary complex. The Baleizão porphyry, intrusive in the Toca da Moura volcano-sedimentary complex, yielded a crystallization age of c. 317 Ma (Bashkirian), providing the minimum age for the overlying intra-Carboniferous unconformity. A comparison of detrital zircon populations from siliciclastic rocks of the Cabrela and Toca de Moura volcano-sedimentary complexes of the OMZ suggests that they derived from distinct sources more closely associated with the SPZ and PLZ than the OMZ. Above the intra-Carboniferous unconformity, the Santa Susana Formation is either the result of the recycling of distinct sources located in the Laurussian-side (SPZ and PLZ) and Gondwanan-side (OMZ) of the Rheic suture zone. The best estimate of the crystallization age of a granite cobble found in a conglomerate from the Santa Susana Formation yielded c. 303 Ma (Kasimovian-Gzhelian), representing the maximum depositional age for the terrestrial strata. The intra-Carboniferous unconformity seems to represent a stratigraphic gap of approximately 12–14 Ma, providing evidence of the rapid post-accretion/collision uplift of the Variscan orogenic belt in SW Iberia (i.e. the OMZ, PLZ and SPZ).


Sign in / Sign up

Export Citation Format

Share Document