scholarly journals Genotype by environment interaction and yield stability analysis of quality protein maize genotypes in Terai Region of Nepal

2013 ◽  
Vol 1 (2) ◽  
pp. 74-78 ◽  
Author(s):  
Jiban Shrestha

Grain yield stability for the new maize genotypes is an important target in maize breeding programs. The main objective of this study was to identify stable high yielding quality protein maize (QPM) genotypes under various locations and years in terai region of Nepal. Six quality protein maize genotypes along with Poshilo Makai-1 (Standard Check) and Farmer’s Variety (Local Check) were tested at three different locations namely Ayodhyapuri-2, Devendrapur, Madi, Chitwan; Rajahar-8, Bartandi, Rajahar,  Nawalparasi; Mangalpur-2, Rampur,  Chitwan during  2011 and 2012 spring and winter seasons under rainfed condition.  The experiment was conducted using Randomized Complete Block Design with two replications in farmer’s fields. There was considerable variation among genotypes and environments for grain yield. The analysis of variance showed that mean squares of environments (E) was highly significant and genotypes (G) and genotype x environment interaction (GEI) were non significant. The genotypes S03TLYQ-AB02 and RampurS03FQ02 respectively produced the higher mean grain yield 5422±564 kg/ha and 5274±603 kg/ha across the locations. Joint regression analysis showed that RampurS03FQ02 and S03TLYQ-AB02 with regression coefficient 1.10 and 1.22 respectively are the most stable genotypes over the tested environments. The coefficient of determination (R2) for genotypes Rampur S03FQ02 and S03TLYQ-AB02 were as high as 0.954, confirming their high predictability to stability. Further confirmation from GGE biplot analysis showed that maize genotype S03TLYQ-AB02 followed by Rampur S03FQ02 were more stable and adaptive genotypes across the tested environments. Thus these genotypes could be recommended to farmers for general cultivation.DOI: http://dx.doi.org/10.3126/ijasbt.v1i2.8202 Int J Appl Sci Biotechnol, Vol. 1(2): 75-79

2021 ◽  
Author(s):  
Gemechu Getachew ◽  
Beyene Abebe ◽  
Deselegn Chelchisa ◽  
Sara Oli ◽  
Temesgen Chebsa ◽  
...  

Abstract The current research examined the magnitude of genotype by environment interaction (G x E) and evaluated the adaptability and stability of maize genotypes for grain yield in Ethiopia's transitional highland agroecology using an additive main effects and multiplicative interaction (AMMI) model. The study's goals were to first assess the yield output and stability of maize genotypes in Ethiopia's transitional highlands, and then to investigate the effect of genotype- environment interaction on genotype yield. During the main season of 2017/2018, thirteen advanced maize genotypes which was selected from different observation trials with two commercial check hybrids were evaluated at five representative locations for agroecology. The experiment was set up using an alpha lattice (3*5) with three replications and two rows per plot. AMMI showed highly significant(P < 0.001) variation of grain yield was observed due to the effect of genotype (G), Environment(E) and their interaction (G x E). In fact, all genotypes evaluated in representative locations for this agroecology had higher grain yield advantages than the best commercial check except one genotype. Overall, this study discovered the possibility of fast releasing and overtake of new maize hybrids for transitional high land agroecology of Ethiopia to exploits availability maize germplasm to maximize production. The best candidate genotype, MABK181261 is a stable and high-yielding product. It is recommended for release as a commercial hybrid alternative after national variety verification trial in a high land transitional agroecology of Ethiopia. In addition, the parental lines of this genotypes can be used to enhance germplasm of opposite heterotic group in maize breeding for East Africa.


2017 ◽  
Vol 1 (2) ◽  
pp. 97
Author(s):  
Slamet Bambang Priyanto ◽  
Roy Efendi ◽  
Bunyamin Z. ◽  
M. Azrai ◽  
M. Syakir

<p class="Abstrak">Visualization of GGE biplot analyses was able to explain the genotype by environment interaction. This research was aimed to determine the yield stability of promising experimental maize hybrids in eight locations based GGE biplot method. Ten promising experimental maize hybrids and two commercial hybrid varieties as check, namely: HBSTK01, HBSTK03, HBSTK05, HBSTK06, HBSTK07, HBSTK08, HBSTK09, HBSTK10, HBSTK11, HBSTK13 and Bima 16 and Pertiwi 3 were evaluated in eight locations, ie. Bangka (Bangka Belitung), Probolinggo (East Java), Minahasa Utara (North Sulawesi), Donggala (Central Sulawesi), Soppeng, South Sulawesi, Gowa (South Sulawesi, Konawe (Southeast Sulawesi)and Lombok Barat (West Nusa Tenggara) from May to October 2013. The treatments were arranged in a randomized complete block design (RCBD) with 3 replications. Variable measured was grain yield. Analysis of variance was performed for data from each study site, to determine the performance of each genotype at each location. Yield stability analysis was performed by GGE biplot method using PB tools software. Results showed that genotype H9 (HBSTK11) had the highest biological stability with grain yield of 10.37 t/ha, higer than the overall mean yield. The best hybrid with the highest yield and good stability was hybrid H6 (HBSTK08) of 11.08 t/ha. This experimental hybrid is considered potential to be released as new hybrid variety. North Minahasa is considered the most suitable location for testing, whereas Konawe and West Lombok are least suitable, compared with the other locations.</p>


2020 ◽  
Vol 3 (2) ◽  
pp. 116-126
Author(s):  
Jiban Shrestha ◽  
Ujjawal Kumar Singh Kushwaha ◽  
Bidhya Maharjan ◽  
Manoj Kandel ◽  
Suk Bahadur Gurung ◽  
...  

Stability analysis identifies the adaptation of a crop genotype in different environments. The objective of this study was to evaluate promising rice genotypes for yield stability at different mid-hill environments of Nepal. The multilocation trials were conducted in 2017 and 2018 at three locations viz Lumle, Kaski; Pakhribas, Dhankuta; and Kabre, Dolakha. Seven rice genotypes namely NR11115-B-B-31-3, NR11139-B-B-B-13-3, NR10676-B-5-3, NR11011-B-B-B-B-29, NR11105-B-B-27, 08FAN10, and Khumal-4 were evaluated in each location. The experiment was laid out in a randomized complete block design with three replications. The rice genotype NR10676-B-5-3 produced the highest grain yield (6.72 t/ha) among all genotypes. The growing environmental factors (climate and soil conditions) affect the grain yield performance of rice genotypes. The variation in climatic factors greatly contributed to the variation in grain yield. Polygon view of genotypic main effect plus genotype-by-environment interaction (GGE) biplot showed that the genotypes NR10676-B-53 and NR11105-B-B-27 were suitable for Lumle; NR11115-B-B-31-3 and NR11139-B-B-B-13-3 for Pakhribas; and 08FAN10 and NR11011-B-B-B-B-29 for Kabre. The GGE biplot showed that genotype NR10676-B-5-3 was stable hence it was near to the point of ideal genotype. This study suggests that NR10676-B-5-3 can be grown for higher grain yield production in mid-hills of Nepal.


2016 ◽  
Vol 2 (1) ◽  
pp. 66-73
Author(s):  
Jiban Shrestha ◽  
Chitra Bahadur Kunwar ◽  
Jharana Upadhyaya ◽  
Maiya Giri ◽  
Ram Bahadur Katuwal ◽  
...  

In order to determine G × E interaction of quality protein maize grain yield, six maize genotypes were evaluated under different environments of three Terai (Chitwan, Surkhet and Doti) and four mid hill (Dhankuta, Lalitpur, Dolakha and Kaski) districts of Nepal during summer seasons of 2014 and 2015. The experiments were conducted using randomized complete block design along with three replications. The  genotypes namely S99TLYQ-B, S99TLYQ-HG-AB and S03TLYQ-AB-01 were identified high yielding and better adapted genotypes for Terai environments with grain yield of  4199 kg ha-1, 3715 kg ha-1, and 3336 kg ha-1 respectively and  S99TLYQ-B and S03TLYQ-AB-01 for mid hill environments with grain yield of  4547 kg ha-1 and 4365 kg ha-1 respectively. Therefore, these genotypes can be suggested for cultivation in their respective environments in the country.


Author(s):  
Olasoji, Julius Oluseyi ◽  
Ajayi, Sunday Adesola

Yield performance of early maturing maize (Zea mays L.) varieties in the rainforest agroecology of southwest Nigeria, is lower than that of intermediate varieties  and that there was no yield advantage in the late varieties over the intermediate maturing varieties. However, the physiological basis of yield differences is yet to be fully investigated. This study was carried out to investigate the physiological basis underlying yield differences in quality protein maize genotypes of different maturity groups. Field experiment was conducted as randomized complete block design (RCBD) with three replicates at Institute of Agricultural Research and Training, Obafemi Awolowo University, Moor Plantation, Ibadan during 2013 and 2014 cropping seasons. The results indicated that season influenced days to 50% Anthesis (DTA), days to 50% silking (DTS), anthesis silking interval (ASI), plant height (PLHT), ear height (EHT), ear per plant (EPP), ear aspect (EASP), kernel width (KWDT) and grain yield (GYD). Maturity groups also influenced DTA, DTS, PASP, PLHT, EHT, and with no effect on GYD. The overall mean grain yields across seasons were 4.44, 4.16, 3.64 and 3.36 t/ha for season 1, 2, 3 and 4, respectively.  It was concluded from this study that all the maturity groups used had similar grain yield.


2019 ◽  
Vol 65 (2) ◽  
pp. 51-58
Author(s):  
Boryana Dyulgerova ◽  
Nikolay Dyulgerov

Abstract The aim of this study was to examine the genotype by environment interaction for grain yield and to identify high-yielding and stable mutant lines of 6-rowed winter barley under different growing seasons. The study was carried out during 7 growing seasons from 2010 – 2011 to 2016 – 2017 in the experimental field of the Institute of Agriculture – Karnobat, Southeastern Bulgaria. Fourteen advanced mutant lines and the check variety Vesletc were studied using a complete block design with 4 replications. The AMMI analysis of variance indicated that 20.54% of the variation for grain yield was explained by the effect of genotype and 37.34% and 42.12% were attributable to the environmental effects and genotype by environment interaction. The magnitude of the genotype by environment interaction was two times larger than that of genotypes, indicating that there was a substantial difference in genotype response across environments. The AMMI and GGE biplot analyses identified G9 as the highest yielding and stable genotype. This mutant line can be recommended for further evaluation for variety release. The mutant lines G6, G13 and G15 were suggested for inclusion in the breeding program of winter barley due to its high grain yield and intermediate stability.


2016 ◽  
Vol 2 (1) ◽  
pp. 94-99 ◽  
Author(s):  
Chitra Bahadur Kunwar ◽  
Ram Bahadur Katuwal ◽  
Sailendra Thapa ◽  
Jiban Shrestha

The objective of this study was to estimate grain yield stability of early maize genotypes. Five early maize genotypes namely Pool-17, Arun1EV, Arun-4, Arun-2 and Farmer’s variety were evaluated using Randomized Complete Block Design along with three replications at four different locations namely Rampur, Rajahar, Pakhribas and Kabre districts of Nepal during summer seasons of three consecutive years from 2010 to 2012 under farmer’s fields. Genotype and genotype × environment (GGE) biplot was used to identify superior genotype for grain yield and stability pattern. The genotypes Arun-1 EV and Arun-4 were better adapted for Kabre and Pakhribas where as pool-17 for Rajahar environments. The overall findings showed that Arun-1EV was more stable followed by Arun-2 therefore these two varieties can be recommended to farmers for cultivation in both environments.


Author(s):  
Agung Wahyu Soesilo

Analysis for yield stability on cocoa hybrids has objective to select high yielding hybrid with stable performance throughout the different agro-climatic conditions. These hybrids were crossed between selected clones of TSH 858, KEE 2, KW 162, KW 163 2, KW 165, ICS 13 and NIC 7. Fourteen hybrids were tested with control in a series of multilocation trial at the locations which were classified by altitude and climate differences such as lowland of dry climate in KP Kaliwining, lowland of wet climate in Kalitelepak Plantation, medium highland of wet climate in Jatirono Plantation and medium highland of dry climate in KP Sumber Asin. Trials were established at the randomizedcomplete block design with 4 blocks where in a plot planted 16-24 trees. Yield assessment was evaluated during 4 consecutive years of harvest by counting the number of pods per tree then converted using yield components and bean quality. Stability analysis was performed in linier basis for the yield. The combined analysis of variance performed a significant effect of interaction between hybrid and location within year that means an effect of genotype by environment interaction. Of the tested hybrids, TSH 858 x KEE 2, TSH 858 x KW 162, KW 162 x KEE 2 and the reciprocal performed higher value of the yield than control with deviation to regression (S2di) equal to zero and coefficient of regression (bi) equal to one except for KEE 2 x KW 162 with bi >1. It could be interpreted that those hybrids were stable to perform the yield and well adapted through the locations except for KEE 2 x KW 162 which specifically adapted to the more suitable condition. By respecting to the potency of yield, bean quality and vascular streak dieback resistance, TSH 858 x KW 162 has been released as new hybrid variety and renamed as ICCRI 06H. The hybrid was characterized by the yield potency of 1.99 kg/tree, a dry bean of 1.07 g and fat content of 54.3%. Key words: Stability analysis, yield, Theobroma cacao L., promising hybrids, agro-climatic condition.


2020 ◽  
Vol 3 (2) ◽  
pp. 127-139
Author(s):  
Bipin Neupane ◽  
Ankur Poudel ◽  
Pradeep Wagle

The varietal evaluation of hybrid maize (Zea mays L.) genotypes with desired performance is one of the main objectives of maize breeding program. Fourteen hybrid maize genotypes were evaluated for 17 quantitative and nine qualitative traits in randomized complete block design with three replications at Sundarbazar, Lamjung, Nepal during May to September, 2019. The major objective was to identify superior genotypes based on genotypic and phenotypic variability, heritability, genetic advance, and correlation between grain yield and yield associated traits. We observed significant differences for 17 quantitative traits among the tested genotypes. Large variation was observed for grain yield among genotypes. Genotype RL-24-0/ RL-111 had the lowest yield (5.53 mt/ha) and Pioneer had the highest yield (11.98 mt/ha) whereas check variety Rampur Hybrid-10 yielded of 8.23 mt/ha. Grain yield showed highly significant positive correlations with stem girth (r= 0.67) and number of ears (r=0.6), but significant negative correlation with anthesis-silking interval (r= -0.55). The dendrogram grouped 14 genotypes into four clusters. Cluster I incorporated the highest number (five) of genotypes, which also had highest cluster mean (average yield of ~10 mt/ha) for grain yield. Traits namely test weight, ear aspect, anthesis-silking interval, number of ears, and tassel branching had high genotypic and phenotypic coefficient of variations, and heritability along with high genetic advances, indicating that these traits can be considered for maize breeding program.


2019 ◽  
Vol 3 (2) ◽  
pp. 72
Author(s):  
Ayda Krisnawati ◽  
M. Muchlish Adie

Soybean in Indonesia is grown in diverse agro-ecological environments. The performance of soybean yield often varies due to significant genotype × environment interaction (GEI), therefore the yield stability of performance is an important consideration in the breeding program. The aim of the research was to exploring the GEI pattern and yield stability of soybean promising lines in the tropics using GGE (Genotype and Genotype by Environment Interaction) biplot method. A total of 16 soybean promising lines were evaluated in ten environments during 2016 growing season. The experiment was arranged in a randomized completely block design with four replicates. The analysis of variance revealed that environments (E) explained the highest percentage of variation (51.45%), meanwhile the genotypes (G) and genotype × environment interactions (GEI) contributed for 3.24%, and 14.59% of the total variation, respectively. Seed yield of 16 soybean promising lines ranged from 2.41 to 2.83 t.ha-1 with an average of 2.74 t.ha-1. Joint effects of genotype and interaction (G+GE) which was partitioned using GGE biplot analysis showed that the first two components were significant, explaining 60.88% (37.89% PC1 and 22.98% PC2) of the GGE sum of squares. Indonesia can be divided into at least four putative mega environments for soybean production. The GGE biplot identified G10 as high yielding and stable promising line, thus recommended to be developed in multi-environment in tropical regions of Indonesia.


Sign in / Sign up

Export Citation Format

Share Document