scholarly journals Thermostable glucose isomerase from psychrotolerant Streptomyces species

1970 ◽  
Vol 1 ◽  
pp. 6-10 ◽  
Author(s):  
Bidur Dhungel ◽  
Manoj Subedi ◽  
Kiran Babu Tiwari ◽  
Upendra Thapa Shrestha ◽  
Subarna Pokhrel ◽  
...  

Glucose isomerase (EC 5.3.1.5) was extracted from Streptomyces spp., isolated from Mt. Everest soil sample, and purified by ammonium sulfate fractionation and Sepharose-4B chromatography. A 7.1 fold increase in specific activity of the purified enzyme over crude was observed. Using glucose as substrate, the Michaelis constant (KM<) and maximal velocity (Vmax) were found to be 0.45M and 0.18U/mg. respectively. The optimum substrate (glucose) concentration, optimum enzyme concentration, optimum pH, optimum temperature, and optimum reaction time were 0.6M, 62.14μg/100μl, 6.9, 70ºC, and 30 minutes, respectively. Optimum concentrations of Mg2+ and Co2+ were 5mM and 0.5mM, respectively. The enzyme was thermostable with half-life 30 minutes at 100ºC.DOI: 10.3126/ijls.v1i0.2300 Int J Life Sci 1 : 6-10

2015 ◽  
Vol 17 (3) ◽  
pp. 84-88 ◽  
Author(s):  
Ogbonnaya Nwokoro

Abstract This work reports the effects of some culture conditions on the production of glucose isomerase by Bacillus licheniformis. The bacterium was selected based on the release of 3.62 mg/mL fructose from the fermentation of glucose. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in a medium containing 0.5% xylose and 1% glycerol (specific activity = 6.88 U/mg protein). Media containing only xylose or glucose gave lower enzyme productivies (specific activities= 4.60 and 2.35 U/mg protein respectively). The effects of nitrogen substrates on glucose isomerase production showed that yeast extract supported maximum enzyme activity (specific activity = 5.24 U/mg protein). Lowest enzyme activity was observed with sodium trioxonitrate (specific activity = 2.44 U/mg protein). In general, organic nitrogen substrates supported higher enzyme productivity than inorganic nitrogen substrates. Best enzyme activity was observed in the presence of Mg2+ (specific activity = 6.85 U/mg protein) while Hg2+ was inhibitory (specific activity = 1.02 U/mg protein). The optimum pH for best enzyme activity was 6.0 while optimum temperature for enzyme production was 50ºC.


1964 ◽  
Vol 42 (11) ◽  
pp. 1515-1526 ◽  
Author(s):  
P. M. Nair ◽  
L. C. Vining

Mycelium from cultures of the red polypore Pycnoporus coccineus (Fr.) Bond. and Sing, contains an enzyme which catalyzes the oxidative condensation of 2 molecules of 2-aminophenol to yield 2-amino-3H-isophenoxazin-3-one. Fractionation of the crude extract has given a preparation with an 893-fold increase in specific activity. The purified enzyme has a pH optimum in citrate-phosphate buffer of 5.0, and a temperature optimum of 55°. The Km value is 4.35 × 10−4 M. FMN and Mn++ ions were required for maximum activity. FAD also served as an electron acceptor. Of the metal ions tested only Mn++ activated the reaction. Hg++ and Fe++ inhibited strongly. The course of the reaction when cofactors were added separately suggested that flavin mononucleotide is the initial electron acceptor and that Mn++ ions are required for reoxidation of the flavin. The enzyme has narrow specificity, and does not catalyze the oxidation of 3-hydroxyanthranilic acid, 3-hydroxykynurenine, or pyrocatechol.


1977 ◽  
Vol 161 (2) ◽  
pp. 357-370 ◽  
Author(s):  
C W Bamforth ◽  
P J Large

1. Extracts of amine-grown Pseudomonas aminovorans contained a particle-bound N-methylglutamate dehydrogenase (EC 1.5.99.5). The enzyme was not present in succinate-grown cells, and activity appeared before growth began in succinate-grown cells which had been transferred to methylamine growth medium. 2. Membrane-containing preparations from methylamine-grown cells catalysed an N-methylglutamate-dependent uptake of O2 or reduction of cytochrome c, which was sensitive to inhibitors of the electron-transport chain. 3. N-Methylglutamate dehydrogenase activity with phenazine methosulphate or 2,6-dichlorophenol-indophenol as electron acceptor could be solubilized with 1% (w/v) Triton X-100. The solubilized enzyme was much less active with cytochrome c as electron acceptor and did not sediment in 1 h at 150000g. Solubilization was accompanied by a change in the pH optimum for activity. 4. The solubilized enzyme was partially purified by Sepharose 4B and hydroxyapatite chromatograpy to yield a preparation 22-fold increased in specific activity over the crude extract. 5. The partially-purified enzyme was active with sarcosine, N-methylalanine and N-methylaspartate as well as with N-methylglutamate. Evidence suggesting activity with N-methyl D-amino acids as well as with the L-forms was obtained. 6. The enzyme was inhibited by p-chloromercuribenzoate, iodoacetamide and by both ionic and non-ionic detergents. 2-Oxoglutarate and formaldehyde were also inhibitors. 7. Kinetic analysis confirmed previous workers' observations of a group transfer (Ping Pong) mechanism. 8. Spectral observations suggested that the partially purified preparation contained flavoprotein and a b-type cytochrome. 9. The role of the enzyme in the oxidation of methylamine is discussed.


1993 ◽  
Vol 295 (2) ◽  
pp. 463-469 ◽  
Author(s):  
S A Freeman ◽  
K Peek ◽  
M Prescott ◽  
R Daniel

The Thermus isolate Rt4A2 was found to produce an extracellular chelator-resistant proteinase. The proteinase was purified to homogeneity by (NH4)2SO4 precipitation, cation-exchange chromatography, gel-filtration chromatography, and weak anion-exchange chromatography. The Rt4A2 proteinase was found to have properties typical of an alkaline serine proteinase. It had a pH optimum of 9.0 and was specifically inhibited by phenylmethanesulphonyl fluoride. Its isoelectric point was greater than 10.25. Its molecular-mass was 31.6 kDa as determined by SDS/PAGE. N-terminal sequencing has shown it to have high sequence similarity with other serine proteinases from Thermus species. The proteinase hydrolysed a number of substrates including fibrin, casein, haemoglobin, collagen, albumin and the synthetic chromogenic peptide substrate Suc-Ala-Ala-Pro-Phe-NH-Np. The specific activity of the purified proteinase using azocasein as substrate was 313 units/mg. Substrate inhibition was observed above an azocasein concentration of 0.05% (w/v). Esterase activity was directed mainly towards those substrates containing the aliphatic or aromatic residues of alanine, glycine, tryptophan, tyrosine and phenylalanine. Thermostability half-lives of greater than 7 days at 70 degrees C, 43 h at 80 degrees C and 90 min at 90 degrees C were found in the presence of 5 mM CaCl2. At 90 degrees C increasing the CaCl2 concentration 100-fold (0.5 mM to 50 mM) caused a 4.3-fold increase in the half-life of the enzyme from 30 to 130 min. Half-lives of 19.4 min at 100 degrees C and 4.4 min at 105 degrees C were found in the presence of 50 mM CaCl2. The metal chelators EGTA and EDTA reduced the stability at higher temperatures but had no effect on the activity of the proteinase. Activity was not stimulated by common metal activators such as Ca2+, Mg2+ and Zn2+.


1989 ◽  
Vol 256 (3) ◽  
pp. E386-E391 ◽  
Author(s):  
J. Spychala ◽  
V. Madrid-Marina ◽  
P. J. Nowak ◽  
I. H. Fox

Three distinct 5'-phosphomonoesterase activities were isolated from soluble fractions of human placenta, cultured human T and B lymphoblasts, and rat liver using 5'-AMP-sepharose 4B affinity chromatography. We define these activities as "low-Km" 5'-nucleotidase, "high-Km" 5'-nucleotidase, and nonspecific phosphatase. High-Km 5'-nucleotidase was eluted with 0.5 M NaCl, low-Km 5'-nucleotidase was eluted with 10 mM ADP, and nonspecific phosphatase was not retained on the column. We have found significant variability in the relative content of high- to low-Km activities in the tissues studied with the ratios ranging from 5.5 to 264. The properties were studied after further purification. The molecular mass of the low-Km enzymes ranged from 72.5 to 209 kDa, optimum pH ranged from 7.4 to 9.0, Km for AMP ranged from 7 to 15 microM, and Km for IMP ranged from 10 to 26 microM. The molecular mass of the high-Km enzymes ranged from 182 to 210 kDa, pH optimum was at 6.5, Km for AMP ranged from 3.0 to 9.4 mM, and the Km for IMP ranged from 0.3 to 0.5 mM. The data indicate that the soluble low- and high-Km 5'-nucleotidase coexist in the mammalian cells and tissues studied. These observations suggest a complex system for the regulation of nucleoside 5'-monophosphate dephosphorylation.


2001 ◽  
Vol 79 (2) ◽  
pp. 195-205 ◽  
Author(s):  
Vessela Raykovska ◽  
Pavlina Dolashka-Angelova ◽  
Donka Paskaleva ◽  
Stanka Stoeva ◽  
Juri Abashev ◽  
...  

A thermostable D-xylose–glucose isomerase was isolated from the thermophilic strain Streptomyces thermovulgaris 127, var. 7-86, as a result of mutagenic treatment by γ-irradiation of the parent strain, by precipitation and sequential chromatographies on DEAE–Sephadex A50, TSK-gel, FPLC-Mono Q/HR, and Superose 12™ columns. The N-terminal amino acid sequence and amino acid analysis shows 73–92% homology with xylose–glucose isomerases from other sources. The native molecular mass, determined by gel filtration on a Superose 12™ column, is 180 kDa, and 44.6 and 45 kDa were calculated, based on amino acid analysis and 10% SDS-PAGE, respectively. Both, the activity and stability of the enzyme were investigated toward pH, temperature, and denaturation with guanidine hydrochloride. The enzyme activity showed a clear pH optimum between pH 7.2 and 9.0 with D-glucose and 7.4 and 8.3 with D-xylose as substrates, respectively. The enzyme is active up to 60–85°C at pH 7.0, using D-glucose, and up to 50–60°C at pH 7.6, using D-xylose as substrates. The activation energy (Ea = 46 kJ·mol–1) and the critical temperature (Tc = 60°C) were determined by fluorescence spectroscopy. Tc is in close coincidence with the melting temperature of denaturation (Tm = 59°C), determined by circular dichroism (CD) spectroscopy. The free energy of stabilization in water after denaturation with Gdn.HCl was calculated to be 12 kJ·mol–1. The specific activity (km values) for D-xylose-glucose isomerase at 70°C toward different substrates, D-xylose, D-glucose, and D-ribose, were determined to be 4.4, 55.5, and 13.3 mM, recpectively.Key words: D-xylose-glucose isomerase, protein sequencing, protein stability, protein denaturation.


2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Hanum Mukti Rahayu ◽  
Wahyu Aristyaning Putri ◽  
Anis Uswatun Khasanah ◽  
LANGKAH SEMBIRING ◽  
Yekti Asih Purwestri

Abstract. Rahayu HM, Putri WA, Khasanah AU, Sembiring L, Purwestri YA. 2021. Indigenous Streptomyces spp. isolated from Cyperus rotundus rhizosphere indicate high mercuric reductase activity as a potential bioremediation agent. Biodiversitas 22: 1519-1526. The purification and characterization of mercuric reductase of four indigenous Streptomyces spp. from Cyperus rotundus L. rhizosphere in mercury-contaminated area have been investigated. Cell-free extract was obtained by disrupting cells using sea sand at 4 °C followed by centrifugation. Mercuric reductase was purified by ammonium sulfate precipitation, dialysis, and chromatography column (DEAE Sepharose anion column chromatography). The determination of optimum pH and temperature of mercuric reductase activity was measured based on the number of NADPH2 oxidized to NADP per mg protein per minute using a spectrophotometer. The molecular weight of mercuric reductase was determined using SDS-PAGE. Result showed that the highest specific activity of mercuric reductase was recorded from Streptomyces spp. BR28. The optimum pH and temperature of cell-free extract enzyme mercuric reductase were 7.5 and 80 °C, respectively. The enzyme was purified to 431.87-fold with specific activity 21918.95 U/mg protein. SDS PAGE showed that the molecular weight of mercuric reductase in Streptomyces spp. BR 28  ranged from 50 kDa to 75 kDa. It can be concluded that Streptomyces isolates contain mercuric reductase and have potential as mercury bioremediation agent to overcome mercury contamination in the environment.


1999 ◽  
Vol 46 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Serguei Golovan ◽  
Guirong Wang ◽  
Jun Zhang ◽  
Cecil W Forsberg

The appA gene that was previously shown to code for an acid phosphatase instead codes for a bifunctional enzyme exhibiting both acid phosphatase and phytase activities. The purified enzyme with a molecular mass of 44 708 Da was further separated by chromatofocusing into two isoforms of identical size with isoelectric points of 6.5 and 6.3. The isoforms had identical pH optima of 4.5 and were stable at pH values from 2 to 10. The temperature optimum for both phytase isoforms was 60°C. When heated at different pH values the enzyme showed the greatest thermal resistance at pH 3. The pH 6.5 isoform exhibited Kmand Vmaxvalues of 0.79 mM and 3165 U·mg-1of protein for phytase activity and 5.5 mM and 712 U·mg-1of protein for acid phosphatase, respectively. The pH 6.3 isoform exhibited slightly lower Kmand Vmaxvalues. The enzyme exhibited similar properties to the phytase purified by Greiner et al. (1993), except the specific activity of the enzyme was at least 3.5-fold less than that previously reported, and the N-terminal amino acid sequence was different. The Bradford assay, which was used by Greiner et al. (1993) for determination of enzyme concentration was, in our hands, underestimating protein concentration by a factor of 14. Phytase production using the T7 polymerase expression system was enhanced by selection of a mutant able to grow in a chemically defined medium with lactose as the carbon source and inducer. Using this strain in fed-batch fermentation, phytase production was increased to over 600 U·mL-1. The properties of the phytase including the low pH optimum, protease resistance, and high activity, demonstrates that the enzyme is a good candidate for industrial production as a feed enzyme.


1988 ◽  
Vol 55 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Juan I. Azcona ◽  
Rosario Martín ◽  
Miguel A. Asensio ◽  
Pablo E. Hernández ◽  
Bernabé Sanz

SummaryA heat stable extracellular proteinase from the psychrotrophPseudomonas fluorescensAH-70 was purified to electrophoretic homogeneity by affinity chromatography on a gramicidin S–Sepharose-4B column. Bacitracin linked to Sepharose-4B was unable to retain any proteolytic activity, whereas the same antibiotic bound to AH-Sepharose-4B retained ~ 25% of the total activity. The purification procedure on the gramicidin S–Sepharose-4B column was easy to perform, fast and reproducible; it resulted in a 207-fold increase in the specific activity and a yield of 41% of the original activity. The purified enzyme was a monomer with a mol. wt of 33000. The enzyme hydrolysed whole casein and its fractions whereas no activity was observed against bovine serum albumin. The enzyme was a metalloproteinase. It was heat stable, havingD-values at 121, 135 and 150 °C of 3·8, 1·9 and 0·6 min respectively.


Blood ◽  
1973 ◽  
Vol 41 (3) ◽  
pp. 379-389 ◽  
Author(s):  
Minoru Okuma ◽  
Satoshi Yamashita ◽  
Shosaku Numa

Abstract Particulate preparations of human platelets were capable of catalyzing acylation of sn-glycerol 3-phosphate by long-chain fatty acyl-CoA thioesters. The principal lipid product formed was identified as phosphatidic acid. The highest specific activity was found in the particulate fraction that sedimented between 12,000 g and 105,000 g. The reaction exhibited a broad pH optimum around 7.4-8.5. The apparent Michaelis constant for sn-glycerol 3-phosphate was 0.48 mM when 28.5 µM palmityl-CoA was used as acyl donor. Palmityl- and oleyl-CoA were better substrates than stearyl-, linoleyl-, and arachidonyl-CoA, as far as the maximal velocity was concerned. Particulate preparations of platelets from normal subjects catalyzed the incorporation of 0.271 ± 0.048 nmole of sn-glycerol 3-phosphate/min per mg of protein. The capacity of human platelets to acylate sn-glycerol 3-phosphate was approximately 40% that of human liver, as compared on the basis of the specific activity of the microsomal fraction. These results suggest that the glycerophosphate pathway makes an essential contribution to the de novo synthesis of phospholipids in human platelets.


Sign in / Sign up

Export Citation Format

Share Document