scholarly journals Application of Numerical Methods for the Analysis of Damped Parallel RLC Circuit

2021 ◽  
Vol 26 (1) ◽  
pp. 28-34
Author(s):  
J. Kafle ◽  
B. K. Thakur ◽  
I. B. Bhandari

A sudden application of sources results in time-varying currents and voltages in the circuit known as transients. This phenomenon occurs frequently during switching. A simple circuit constituting a resistor, an inductor, and a capacitor is termed an RLC circuit. It may be in parallel or series configuration or both. Different values of damping factors determine the different nature of the transient response. We applied different numerical solution methods such as explicit (forward) Euler method, third-order Runge-Kutta (RK3) method, and Butcher's fifth-order Runge-Kutta (BRK5) method to approximate the solution of second-order differential equation with initial value problem (IVP). We thoroughly compared the numerical solutions obtained by these methods with the necessary visualization and analysis of error. We also examined the superiority of these methods over one another and the appropriateness of numerical methods for different damping conditions is explored. With high accuracy of the approximation and thorough analysis of the observation, we found Butcher's fifth-order Runge-Kutta (BRK5) method to be the best numerical technique. Regarding the different values of damping factors, we considered the further possibility of discussion and analysis of this iterative method.

BIBECHANA ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 9-17
Author(s):  
Jeevan Kafle ◽  
Bhogendra Kumar Thakur ◽  
Indra Bahadur Bhandari

The time varying currents and voltages resulting from the sudden application of sources usually due to switching are transients. An RLC circuit is an electrical circuit consisting of a resistor, an inductor, and a capacitor, connected in series or in parallel. The transient response is dependent on the value of the different characteristics of damping factor (i.e., over damped, critically damped and under damped). We have computed the numerical solutions of second order differential equation with initial value problem (IVP) by using Explicit (Forward) Euler method, Third order Runge-Kutta (RK3) methods and Butchers fifth order Runge-Kutta (BRK5). The observation compares this numerical solution of ODEs obtained by above-mentioned methods among them with necessary visualization and analysis of the error. These iterative methods will be extended and implement to analyze the transient analysis of an RLC circuit.  We have examined the superiority of those methods over one another. The Butchers fifth order Runge-Kutta (BRK5) method is found to be the best numerical technique to solve the transient analysis due to its high accuracy of approximations. Moreover, we consider the possibility of discussion and analyze above mentioned iterative methods in the cases of different characteristics of damping factor. BIBECHANA 18 (2) (2021) 9-17  


Author(s):  
Mohammad Asif Arefin

In this paper, the initial value problem of Ordinary Differential Equations has been solved by using different Numerical Methods namely Euler’s method, Modified Euler method, and Runge-Kutta method. Here all of the three proposed methods have to be analyzed to determine the accuracy level of each method. By using MATLAB Programming language first we find out the approximate numerical solution of some ordinary differential equations and then to determine the accuracy level of the proposed methods we compare all these solutions with the exact solution. It is observed that numerical solutions are in good agreement with the exact solutions and numerical solutions become more accurate when taken step sizes are very much small. Lastly, the error of each proposed method is determined and represents them graphically which reveals the superiority among all the three methods. We fund that, among the proposed methods Runge-Kutta 4th order method gives the accurate result and minimum amount of error.


Author(s):  
Athanasios Donas ◽  
Ioannis Famelis ◽  
Peter C Chu ◽  
George Galanis

The aim of this paper is to present an application of high-order numerical analysis methods to a simulation system that models the movement of a cylindrical-shaped object (mine, projectile, etc.) in a marine environment and in general in fluids with important applications in Naval operations. More specifically, an alternative methodology is proposed for the dynamics of the Navy’s three-dimensional mine impact burial prediction model, Impact35/vortex, based on the Dormand–Prince Runge–Kutta fifth-order and the singly diagonally implicit Runge–Kutta fifth-order methods. The main aim is to improve the time efficiency of the system, while keeping the deviation levels of the final results, derived from the standard and the proposed methodology, low.


2021 ◽  
Vol 7 (2) ◽  
pp. 97-101
Author(s):  
H. P. Kandel ◽  
J. Kafle ◽  
L. P. Bagale

Many physical problems, such as heat transfer and wave transfer, are modeled in the real world using partial differential equations (PDEs). When the domain of such modeled problems is irregular in shape, computing analytic solution becomes difficult, if not impossible. In such a case, numerical methods can be used to compute the solution of such PDEs. The Finite difference method (FDM) is one of the numerical methods used to compute the solutions of PDEs by discretizing the domain into a finite number of regions. We used FDMs to compute the numerical solutions of the one dimensional heat equation with different position initial conditions and multiple initial conditions. Blacksmiths fashioned different metals into the desired shape by heating the objects with different temperatures and at different position. The numerical technique applied here can be used to solve heat equations observed in the field of science and engineering.


2021 ◽  
Vol 2 (1) ◽  
pp. 37-44
Author(s):  
Rizky Ashgi

Coronavirus Disease 2019 has become global pandemic in the world. Since its appearance, many researchers in world try to understand the disease, including mathematics researchers. In mathematics, many approaches are developed to study the disease. One of them is to understand the spreading of the disease by constructing an epidemiology model. In this approach, a system of differential equations is formed to understand the spread of the disease from a population. This is achieved by using the SIR model to solve the system, two numerical methods are used, namely Euler Method and 4th order Runge-Kutta. In this paper, we study the performance and comparison of both methods in solving the model. The result in this paper that in the running process of solving it turns out that using the euler method is faster than using the 4th order Runge-Kutta method and the differences of solutions between the two methods are large.


2021 ◽  
Vol 2 (2) ◽  
pp. 79-88
Author(s):  
Jeevan Kafle ◽  
Bhogendra Kumar Thakur ◽  
Grishma Acharya

Many physical problems in the real world are frequently modeled by ordinary differential equations (ODEs). Real-life problems are usually non-linear, numerical methods are therefore needed to approximate their solution. We consider different numerical methods viz., Explicit (Forward) and Implicit (Backward) Euler method, Classical second-order Runge-Kutta (RK2) method (Heun’s method or Improved Euler method), Third-order Runge-Kutta (RK3) method, Fourth-order Runge-Kutta (RK4) method, and Butcher fifth-order Runge-Kutta (BRK5) method which are popular classical iteration methods of approximating solutions of ODEs. Moreover, an intuitive explanation of those methods is also be presented, comparing among them and also with exact solutions with necessary visualizations. Finally, we analyze the error and accuracy of these methods with the help of suitable mathematical programming software.


2021 ◽  
Vol 23 (11) ◽  
pp. 99-109
Author(s):  
T. Muthukumar ◽  
◽  
T. Jayakumar ◽  
D.Prasantha Bharathi ◽  
◽  
...  

In this paper, we develop the numerical solutions of certain type called Fuzzy Delay Differential Equations(FDE) by using fifth order Runge-Kutta method for fuzzy differential equations. This method based on the seikkala derivative and finally we discuss the numerical examples to illustrate the theory.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Zulqurnain Sabir ◽  
Juan L. G. Guirao ◽  
Tareq Saeed ◽  
Fevzi Erdoğan

In this study, a novel second-order prediction differential model is designed, and numerical solutions of this novel model are presented using the integrated strength of the Adams and explicit Runge–Kutta schemes. The idea of the present study comes to the mind to see the importance of delay differential equations. For verification of the novel designed model, four different examples of the designed model are numerically solved by applying the Adams and explicit Runge–Kutta schemes. These obtained numerical results have been compared with the exact solutions of each example that indicate the performance and exactness of the designed model. Moreover, the results of the designed model have been presented numerically and graphically.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Hui Yu ◽  
Minghui Song

The numerical methods in the current known literature require the stochastic differential equations (SDEs) driven by Poisson random measure satisfying the global Lipschitz condition and the linear growth condition. In this paper, Euler's method is introduced for SDEs driven by Poisson random measure with non-Lipschitz coefficients which cover more classes of such equations than before. The main aim is to investigate the convergence of the Euler method in probability to such equations with non-Lipschitz coefficients. Numerical example is given to demonstrate our results.


Sign in / Sign up

Export Citation Format

Share Document