scholarly journals The Electrochemical Behavior of Carbon Steel Wires of Nepal in Different Environments

1970 ◽  
Vol 24 ◽  
pp. 31-38
Author(s):  
Jagadish Bhattarai

The electrochemical behavior of carbon steel wires of Nepal is studied in 1 M HCl, 0.5 M NaCl and 1 M NaOH solutions at 25°C, open to air using immersion tests and electrochemical measurements. The corrosion rates of the carbon steel wires were found to be about 20-50 mm/y in acidic 1 M HCl and 0.1-0.2 mm/y in neutral 0.5 M NaCl. The corrosion rate of all the examined steel wires in alkaline 1 M NaOH solution (that is, 7 - 18 x 10-3 mm/y) was found nearly three orders of magnitude lower corrosion resistance than in 1 M HCl solution at 25°C, mostly due to an ennoblement of the open circuit potentials of the steel wires at passive potential regions (that is, -200 to 250 mV vs SCE) in 1 M NaOH solution. The steel wires seem to be very corrosion resistance materials in very alkaline environments like cement-based materials. Keywords: Carbon steel wire; Corrosion tests; Polarization measurement; HCl;  NaCl and NaOH solutionsDOI: 10.3126/jncs.v24i0.2388Journal of Nepal Chemical Society Vol. 24, 2009 Page: 31-38   

1970 ◽  
Vol 22 ◽  
pp. 34-40
Author(s):  
J. Bhattarai ◽  
A. Kafle ◽  
N. P. Bhattarai

The passivation behavior of carbon steel rods of Nepal is studied in 1 M HCl, 0.5 M NaCl and 1 M NaOH solutions at 25°C, open to air using corrosion tests and electrochemical measurements. The corrosion rate of all the examined steel rods is significantly lower in 1 M NaOH solution (about 10-3 mm/y) than those in 0.5 M NaCl (about 10-2 mm/y) and 1 M HCl (about 101-102 mm/y) solutions. The corrosion rate of SR71 steel rod is remarkably lower (3.65 mm/y) than those of other four different steel rods (3-4 x 102 mm/y) of Nepal in 1 M HCl solution. The ennoblement of the open circuit potentials of all the examined steel rod specimens is clearly observed in 1 M NaOH solution than those in 0.5 M NaCl and 1 M HCl solutions. The open circuit potentials of the steel rods are in the passive potential regions of the iron wire in 1 M NaOH solution. Therefore, steel rods of different companies of Nepal showed significantly high corrosion resistance in 1 M NaOH solution at 25°C.DOI: 10.3126/jncs.v22i0.520Journal of Nepal Chemical SocietyVol. 22, 2007 pp.34-40


1970 ◽  
Vol 24 ◽  
pp. 3-11
Author(s):  
Pom Lal Kharel ◽  
Jagadish Bhattarai

The synergistic effect of chromium addition in the sputter-deposited amorphous or nanocrystalline W-Cr-(4-15)Ni alloys is studied in alkaline NaOH solutions at 25°C, open to air using immersion tests and electrochemical measurements. In 1 M NaOH solution, the addition of chromium to W-Cr-(4-15)Ni alloys containing 42-75 at % chromium increased the corrosion resistance and shifted the open circuit potential more noble so as to show higher corrosion resistance than those of alloy-constituting elements (that is, tungsten, chromium and nickel). The corrosion rates (that is, about 2-5 x 10-3 mm.y-1) of all the examined W-Cr-(4-15)Ni alloys are about two orders of magnitude lower than that of tungsten and nearly one order of magnitude lower than that of chromium metal. The open circuit potential of the W-Cr-(4-15)Ni alloys is generally increased with increasing chromium content in different concentrations of NaOH solutions. The passivity of the WCr-(4-15)Ni alloys is increased with decreasing the concentration of NaOH solutions at 25°C. Keywords: Corrosion resistance; Sputter deposition;  W-Cr-Ni alloy;  NaOH solution; Open Circuit  potential. DOI: 10.3126/jncs.v24i0.2380Journal of Nepal Chemical Society, Vol. 24, 2009 Page: 3-11


1970 ◽  
Vol 25 ◽  
pp. 93-100
Author(s):  
Raju Ram Kumal ◽  
Jagadeesh Bhattarai

Roles of alloy-constituting elements on the corrosion behavior of the sputter-depositedamorphous W-Zr-(15-33)Cr alloys was studied in 1 M NaOH solution open to air at 25°Cusing corrosion tests and open circuit potential measurements. Zirconium and chromiummetals act synergistically with tungsten in enhancing the corrosion resistance of the sputterdepositedamorphous W-Zr-Cr alloys containing 15-33 at % chromium content so as toshow higher corrosion resistance than those of alloy-constituting elements in 1 M NaOHsolution. The corrosion rates of the amorphous W-Zr-(15-33)Cr alloys containing 9-33 at %tungsten are in the ranges of 2.0-5.0×10-3 mm.y-1 after immersion for 240 h in 1 M NaOHsolution which is about two orders of magnitude lower corrosion rates lower than that oftungsten and even slightly lower than that of the zirconium metal. The simultaneousadditions of zirconium and chromium metals in W-Zr-(15-33)Cr alloys are effective forennoblement of the open circuit potential of the tungsten metal.Keywords: W-Zr-Cr alloys, corrosion resistance, immersion test, open circuit potential, 1 MNaOH.DOI:  10.3126/jncs.v25i0.3312Journal of Nepal Chemical Society Volume 25, 2010 pp 93-100


1970 ◽  
Vol 9 ◽  
pp. 157-162
Author(s):  
Jagadeesh Bhattarai

The passivation behavior of steel rods and wires those are produced in Nepal was studied in 1 M HCl and 1 M NaOH solutions at 25°C, open to air using immersion tests and electrochemical measurements. The corrosion resistance of all the examined steel rods and wires in this work is found significantly higher in alkaline 1 M NaOH than in acidic 1 M HCl, mostly due to an ennoblement of the open circuit corrosion potentials of the steels at passive potential regions in 1 M NaOH solution at 25°C. The corrosion rate of all the examined steel rods and wires is about in the range of 1-5 x 101 mm/y in acidic 1 M HCl solution which is nearly three orders of magnitude lower corrosion resistance than in alkaline 1 M NaOH solution at 25°C. Therefore, these steel rods and wires seem to be very corrosion resistance materials in very alkaline environments like a reinforcing concrete. Key words: steels; corrosion rate; open circuit potential; immersion test; electrochemical measurements. DOI: 10.3126/njst.v9i0.3181 Nepal Journal of Science and Technology 9 (2008) 91-97


1970 ◽  
Vol 9 (9) ◽  
pp. 39-43
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

Simultaneous additions of tungsten, chromium and zirconium in the chromium- and zirconium-enriched sputter-deposited binary W-xCr and W-yZr are effective to improve the corrosion resistance property of the ternary amorphous W- xCr-yZr alloys after immersion for 240 h in 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter-deposited (10-57)W-(18-42)Cr-(25-73)Zr alloys is higher than those of alloy-constituting elements (that is, tungsten, chromium and zirconium) in aggressive 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter−deposited W–xCr–yZr alloys containing 10-57 at% tungsten, 18-42 at% chromium and 25-73 at% zirconium were in the range of 1.5-2.5 × 10−3 mm/y or lower which are more than two orders of magnitude lower than that of sputter-deposited tungsten and even about one order of magnitude lower than those of the sputter-deposited zirconium in 1 M NaOH solution. Keywords: Ternary W–Cr–Zr alloys; Amorphous; Corrosion rate; Open circuit potential; 1 M NaOH. DOI: http://dx.doi.org/10.3126/sw.v9i9.5516 SW 2011; 9(9): 39-43


1970 ◽  
Vol 25 ◽  
pp. 53-61
Author(s):  
Minu Basnet ◽  
Jagadeesh Bhattarai

The corrosion behavior of the sputter-deposited nanocrystalline W-Cr alloys wasstudied in 0.5 M NaCl and alkaline 1 M NaOH solutions at 25°C, open to air usingimmersion tests and electrochemical measurements. Chromium metal acts synergisticallywith tungsten in enhancing the corrosion resistance of the sputter-deposited W-Cr alloys soas to show higher corrosion resistance than those of alloy-constituting elements in both 0.5M NaCl and 1 M NaOH solutions. In particular, the nanocrystalline W-Cr alloys containing25-91 at% chromium showed about one order of magnitude lower corrosion rates (that is,about 1-2 × 10-3 mm.y-1) than those of tungsten and chromium metals even for prolongedimmersion in 0.5 M NaCl solution at 25°C. On the other hand, the corrosion rate of thesputter-deposited W-Cr alloys containing 25-75 at % chromium was decreased significantlywith increasing chromium content and showed lowest corrosion rates (that is, 1.5-2.0 × 10-3 mm.y-1) after immersed for prolonged immersion in 1 M NaOH solution. The corrosion ratesof these nanocrystalline W-(25-75)Cr alloys are nearly two orders of magnitude lower thanthat of tungsten and more than one order of magnitude lower corrosion rate than that ofsputter-deposited chromium metal in 1 M NaOH solution. The corrosion-resistant of all theexamined sputter-deposited W-Cr alloys in 0.5 M NaCl solution is higher than in alkaline 1M NaOH solution at 25°C. Open circuit potentials of all the examined W-Cr alloys areshifted to more noble direction with increasing the chromium content in the alloys afterimmersion for 72 h in both 0.5 M NaCl and 1 M NaOH solutions at 25°C, open to air.Keywords: Sputter deposition, nanocrystalline W-Cr alloys, corrosion test, electrochemicalmeasurement, NaCl and NaOH solutions.DOI:  10.3126/jncs.v25i0.3300Journal of Nepal Chemical Society Volume 25, 2010 pp 53-61


2014 ◽  
Vol 20 (2) ◽  
pp. 159-168 ◽  
Author(s):  
Kazeem K. Adewole ◽  
Steve J. Bull

Steel wires are used as a bridge construction material and as pre-stressing strands or tendons in pre-stressed structural units among other applications in civil engineering. To date, the estimation of the load carrying capacity of a cracked wire has been based on purely experimental classical fracture mechanics work conducted with non-standardised classical fracture mechanics specimens as standard test specimens could not be manufactured from the wire owing to their size. In this work, experimental mechanical tests and finite element simulation with the phenomenological shear fracture model has been conducted to investigate the effect of miniature cracks with dimensions less than or equal to 0.2 mm (which is the limit of the current non-destructive detection technology) on the tensile and fracture properties of flat carbon steel wire. The investigation revealed that the reduction in the displacement at fracture of the wire due to the presence of cracks shallower than 0.2 mm is significantly higher than the reduction in the fracture load of the wire. Consequently, the displacement at fracture and by extension the fracture strain capacity of the wire could serve as a more appropriate parameter to assess the quality and the structural integrity of cracked wires.


2016 ◽  
Vol 4 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Deepak V.K. ◽  
Jagadeesh Bhattarai

The effect of sodium tungstate on the passivation behavior of grille sheet made by mild steel was studied using corrosion tests and electrochemical measurements in 1 M HCl, 0.5 M NaCl and 1 M NaOH solutions, open to air at 25 °C. The grille sheet showed the highest corrosion resistance properties in 1 M NaOH solution as compared with 1 M HCl and 0.5 M NaCl solutions. The corrosion resistance properties of the steel sheet was decreased with increasing the concentration of sodium tungstate up to 800 ppm and its corrosion inhibition efficiency was increased with increasing the concentration. The open circuit potential of the mild steel sheet was more negative value in 0.5 M NaCl than that in 1 M HCl, whereas more positive potential value was observed in 1 M NaOH than in 0.5 M NaCl solution. It was found that the mild steel sheet used in the study was found to be more passive in 1 M NaOH than in 1 M HCl and 0.5 M NaCl solutions. Hence, a more stable anodic passive film was formed on the surface of the steel sheet in 1 M NaOH than those in 1 M HCl and 0.5 M NaCl solutions from electrochemical measurements.Int J Appl Sci Biotechnol, Vol 4(2): 183-190  


2011 ◽  
Vol 378-379 ◽  
pp. 706-710 ◽  
Author(s):  
Niwat Anuwongnukroh ◽  
Surachai Dechkunakorn ◽  
Pornkiat Churnjitapirom ◽  
Ekkapot Sukhanun ◽  
Tunwa Intrarasuksanti ◽  
...  

In Thailand, commercial orthodontic stainless steel wires are imported from overseas and expensive. However, lower cost general purpose stainless steel wires, the same type and number as commercial orthodontic stainless steel wires may be used for orthodontic purposes. Objective: This study aimed to determine the physical, mechanical and chemical properties of general purpose stainless steel wire compared with commercial orthodontic stainless steel wires. Materials and Method: Two commercial orthodontic stainless steel wires (Ormco and Highland) and general purpose stainless steel wire (SUS 304H) were evaluated. The physical and mechanical properties were studied according to ISO 15841:2006 and corrosion resistance was studied according to ISO 10271:2001. Surface characteristics and composition were studied by scanning electron microscope (SEM) and electron probe micro analyzer, respectively. Results: The experiment indicated that SUS 304H had the diameter and mechanical properties in the range of orthodontic stainless steel wires. The surface characteristics SUS 304H were similar from observation by SEM magnifications but SUS 304H had lower corrosion resistance due to lower nickel content. The composition confirmed that the three samples wires were genuine type 304. Conclusion: SUS 304H properties are comparable to commercial orthodontic wire properties.


2020 ◽  
Vol 1012 ◽  
pp. 385-389
Author(s):  
P. Detlinger ◽  
R. Helleis ◽  
A.P.C. Matheus ◽  
B. Utri ◽  
B.V. Dias ◽  
...  

Carbon steel is widely used in the industry due to its mechanical properties and low cost, but in contrast it resists poorly to corrosion, leading to economic losses and mechanical issues. The use of surface treatment is essential to extend the life of the metallic material. In this context, niobium is being studied for its great corrosion resistance properties. The aim of this paper was to produce and evaluate the corrosion protection of a niobium-based coating produced by the Pechini Method. The resin was applied in the metallic surface by dip-coating and then calcinated at 450 oC for 1 hour. The coated material was analyzed electrochemically by open circuit potential and potentiodynamic polarization, and morphologically by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The electrochemical analyses showed that the deposition of the coating increased the corrosion resistance and the morphological analyses indicated a homogenous coating with the presence of phases of NbO and NbO2.


Sign in / Sign up

Export Citation Format

Share Document