Mixing of High Ductile Mortar (HDM) in Concrete Mixers

2019 ◽  
Vol 1 ◽  
pp. 1-10
Author(s):  
Tek Raj Gyawali

Plain concrete is strong in compression, but very weak in tension. Tensile strength of plain concrete is about10 to 15% of the compressive strength depending upon the grade of concrete. Another limitation of plain concrete is that it is brittle in failure. Fiber-reinforced concrete (FRC) is the concrete made primarily of hydraulic cements, aggregates, and discrete reinforcing fibers. Fibers suitable for reinforcing concrete are produced from steel, glass, and organic polymers (synthetic fibers). Author hereby has attempted to develop the High Ductile Mortar (HDM) using Poly Vinyl Alcohol (PVA) fibers. HDM may replace the steel fibers to increase the flexural strength and deflection. It also lightens the structure than steel fiber reinforced concrete (SFRC). This paper gives the brief history of HDM development results which were mixed in small mortar mixer of 10 liter capacity. Then, it presents the results of HDM mixed in two different concrete mixers of 100 liter capacity using different PVA fibers and sands.

Concrete is the most widely used product in the construction sector mainly because of its properties and its capability to be moulded to any size. Plain concrete has low tensile strength and forms internal micro cracks. It has been proven that with the addition of natural fibers and synthetic fibers in concrete, it helps in the durability and functionality of structure. The steel fibers are added to the concrete in very low volume doses and it has been effective in decreasing the plastic shrinkage in cracking and also acting as a crack arrestor. In this journal, experimental analysis on steel fiber reinforced concrete is done on M30 and M50 mix with 0.5%, 1%, 1.5% and 2% volume fraction of steel fiber content and is compared with samples of 0% steel fiber content and these samples are investigated on their compressive, split tensile and flexural strengths.


Fibers ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 93 ◽  
Author(s):  
Boglárka Bokor ◽  
Máté Tóth ◽  
Akanshu Sharma

Increased loading rates on fasteners may be caused by high ground accelerations as a consequence of e.g., nuclear explosions, earthquakes or car collisions. It was concluded by Hoehler et al. (2006) that fasteners under rapid loading rates show an increased ultimate resistance in the concrete dominant failure modes or the ultimate resistance is at least as large as under quasi-static loading. Due to the increased demand on using fasteners in steel fiber reinforced concrete (SFRC), it is intended to show how the ultimate concrete cone capacity of fasteners changes under higher than quasi-static loading rate in normal plain concrete (PC) and in SFRC. This paper presents the results of an extensive experimental program carried out on single fasteners loaded in tension in normal plain concrete and in SFRC. The test series were conducted using a servo-hydraulic loading cylinder. The tests were performed in displacement control with a programmed ramp speed of 1, 100, 1000, and 3500 mm/min. This corresponded to calculated initial loading rates ranging between 0.4 and 1600 kN/s. The results of the tension tests clearly show that the rate-dependent behavior of fasteners in SFRC with 30 and 50 kg/m3 hooked-end-type fibers fits well to the previously reported rate-dependent concrete cone behavior in normal plain concrete. Additionally, a positive influence of the fibers on the concrete cone capacity is clearly visible.


2008 ◽  
Vol 400-402 ◽  
pp. 391-394
Author(s):  
Ming Hui Wei ◽  
Yi Ping Liu ◽  
Li Qun Tang ◽  
Xiao Qing Huang

Flexure behaviors of plain concrete (PC), steel fiber reinforced concrete (SFRC), polymer modified concrete (PMC), steel fiber reinforced and polymer modified concrete (SFRPMC) and hybrid fiber reinforced concrete (HFRC) with steel fiber and polymer fiber are studied in this paper, flexure tests were carried out and flexure strengths of the five different materials with different mixture ratios were measured and compared. Flexure ductility of PC, PMC, SFRC, and SFRPMC were calculated and compared. In addition, considering performance and cost estimation comprehensively, HFRC is recommended, preliminary tests show that HFRC may be one of the potential materials for bridge pavement.


2009 ◽  
Vol 79-82 ◽  
pp. 1771-1774
Author(s):  
Min Bai ◽  
Di Tao Niu ◽  
Xiong Wu

In recent years, the concrete material subject to chloride corrosion which impacts greatly on the durability of the building project in the marine or coastal environment has been reported repeatedly. With the problems becoming more and more serious, much attention has been paid on it gradually. To improve the durability of the concrete structure in the marine environment, the author tried to add the different content of steel fiber into the concrete and research the permeability of the concrete in the chloride environment. Four different volumes of steel fiber were selected to prepare the concrete. The dates of the proportion are as follows, 1)0.5%; 2)1%; 3)1.5%; 4)2%. Leave the steel fiber reinforced concrete and plain concrete to soak in the sodium chloride solution which mass percent is 3.5%. The soak time is 30, 60, 90,120, 180 days separately. Among this, the test items include the penetration depth of chloride, the chloride ion content and the splitting strength after soaking period. As a result of the test, it is demonstrated that chloride penetration-resistant of steel fiber reinforced concrete is better than plain concrete. The best performance is obtained when the content of steel fiber is 1.5%. The results will be very useful to the concrete professional dealing with chloride-ion penetration. In conclusion, it is convinced that the application of this result in marine engineering will bring well economic and social environmental benefits for the society.


2014 ◽  
Vol 584-586 ◽  
pp. 1630-1634
Author(s):  
Xin Hua Cai ◽  
Zhen He ◽  
Wen Liu

PVA fiber reinforced cement-based composite is a new high-performance cement-based composite material, which usually manufactured with PVA short fibers (does not exceed 2.5% vol.) and cement-based matrix. It has a significant strain-hardening characteristic and excellent crack controlling ability. Its ultimate tensile strain is up to 3% and crack width is not exceed 100μm. PVA fiber reinforced cement-based composite can be utilized to fabricated high energy absorption opponents, such as protective shield, seismic joint, impact-resistant site, etc. In this paper, the basic mechanical properties of PVA fiber reinforced cement-based composite has been tested and verified first. Then the impact resistance of PVA reinforced cement-based composite has been investigated via drop weight impact test, and compared with ones of plain concrete and steel fiber reinforced concrete with the same strength grade. Through analyzing the test results, it is concluded that PVA reinforced cement-based composite’s impact energy absorption is 48 times than plain concrete, and 9 times than steel fiber reinforced concrete respectively. The impact numbers of PVA reinforced cement-based composite is slightly lower than steel fiber reinforced concrete, but its impact absorption energy after initial cracking is 15 times than steel fiber reinforced concrete. In conclusion, PVA reinforced cement-based composite is an excellent impact material.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Md. Arman Chowdhury ◽  
Md. Mashfiqul Islam ◽  
Zubayer Ibna Zahid

Plain concrete and steel fiber reinforced concrete (SFRC) cylinder specimens are modeled in the finite element (FE) platform of ANSYS 10.0 and validated with the experimental results and failure patterns. Experimental investigations are conducted to study the increase in compressive and tensile capacity of cylindrical specimens made of stone and brick concrete and SFRC. Satisfactory compressive and tensile capacity improvement is observed by adding steel fibers of 1.5% volumetric ratio. A total of 8 numbers of cylinder specimens are cast and tested in 1000 kN capacity digital universal testing machine (UTM) and also modeled in ANSYS. The enhancement of compressive strength and splitting tensile strength of SFRC specimen is achieved up to 17% and 146%, respectively, compared to respective plain concrete specimen. Results gathered from finite element analyses are validated with the experimental test results by identifying as well as optimizing the controlling parameters to make FE models. Modulus of elasticity, Poisson’s ratio, stress-strain behavior, tensile strength, density, and shear transfer coefficients for open and closed cracks are found to be the main governing parameters for successful model of plain concrete and SFRC in FE platform. After proper evaluation and logical optimization of these parameters by extensive analyses, finite element (FE) models showed a good correlation with the experimental results.


2017 ◽  
Vol 59 (7-8) ◽  
pp. 653-660 ◽  
Author(s):  
Wang Yan ◽  
Ge Lu ◽  
Chen Shi Jie ◽  
Zhou Li ◽  
Zhang Ting Ting

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 445
Author(s):  
José Valdez Aguilar ◽  
César A. Juárez-Alvarado ◽  
José M. Mendoza-Rangel ◽  
Bernardo T. Terán-Torres

Concrete barely possesses tensile strength, and it is susceptible to cracking, which leads to a reduction of its service life. Consequently, it is significant to find a complementary material that helps alleviate these drawbacks. The aim of this research was to determine analytically and experimentally the effect of the addition of the steel fibers on the performance of the post-cracking stage on fiber-reinforced concrete, by studying four notch-to-depth ratios of 0, 0.08, 0.16, and 0.33. This was evaluated through 72 bending tests, using plain concrete (control) and fiber-reinforced concrete with volume fibers of 0.25% and 0.50%. Results showed that the specimens with a notch-to-depth ratio up to 0.33 are capable of attaining a hardening behavior. The study concludes that the increase in the dosage leads to an improvement in the residual performance, even though an increase in the notch-to-depth ratio has also occurred.


Sign in / Sign up

Export Citation Format

Share Document