scholarly journals Lasers in Orthodontics – A Review

2020 ◽  
Vol 10 (3) ◽  
pp. 62-65
Author(s):  
Nilesh Mote ◽  
N G Toshniwal ◽  
Shubhangi Mani ◽  
Ashwini Nalkar ◽  
Vishal Dhanjani

Introduction: In past few years, there is huge improvement in orthodontics. Different innovation in orthodontics made the procedure easier and less time consuming. Application of laser is one of them. Many types of dental lasers are currently available that can be efficiently used for soft and hard tissue applications in the field of orthodontics. Two types of lasers are there. One is hard tissue laser, and another is soft tissue laser. Laser therapy is advantageous because it often avoids bleeding, can be pain free, is non‑invasive and is relatively quick. The high cost is its primary disadvantage. The purpose of this article is to provide an overview regarding safe and proper use of soft-tissue lasers in orthodontics

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Miriam Thöne-Mühling ◽  
Oliver D. Kripfgans ◽  
Reiner Mengel

Abstract Background The diagnosis of soft and hard tissue at dental implants will be challenging in the future, as high prevalence of mucositis and peri-implantitis were described in the population. Ultrasonography is a promising non-invasive, inexpensive, painless, and radiation-free method for imaging hard and soft tissue at implants, especially an ultrasound device with a 25-MHz probe demonstrating a high correlation between ultrasound, clinical, and radiological measurements. Case presentation The following case series demonstrates the use of ultrasonography with high spatial resolution probe in patients with dental implants affected by soft tissue recession and/or crestal bone loss. Conclusion These ultrasound images can provide valuable additional information for the assessment of peri-implant soft and hard tissue.


2013 ◽  
Vol 07 (S 01) ◽  
pp. S119-S125 ◽  
Author(s):  
Ruhi Nalcaci ◽  
Serpil Cokakoglu

ABSTRACTMany types of dental lasers are currently available that can be efficiently used for soft and hard tissue applications in the field of orthodontics. For achieving the desired effects in the target tissue, knowledge of laser characteristics such as power, wavelength and timing, is necessary. Laser therapy is advantageous because it often avoids bleeding, can be pain free, is non-invasive and is relatively quick. The high cost is its primary disadvantage. It is very important to take the necessary precautions to prevent possible tissue damage when using laser dental systems. Here, we reviewed the main types and characteristics of laser systems used in dental practice and discuss the applications of lasers in orthodontics, harmful effects and laser system safety.


2005 ◽  
Vol 2 (2) ◽  
pp. 133-140 ◽  
Author(s):  
D. Mietchen ◽  
H. Keupp ◽  
B. Manz ◽  
F. Volke

Abstract. For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows non-invasive studies of anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly of soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological diagnoses directly derived from 3D MR images with microscopic resolution. Syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Besides, evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. These findings highlight the potential of Magnetic Resonance techniques for further paleontological applications.


Cosmetics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 56
Author(s):  
Tassahil Messas ◽  
Achraf Messas ◽  
George Kroumpouzos

Genitourinary syndrome of menopause (GSM) causes significant symptomatic aggravation that affects the quality of life (QoL). Vulvovaginal atrophy (VVA), the hallmark of GSM, is managed with topical non-hormonal therapy, including moisturizers and lubricants, and topical estrogen application. Patients not responding/being unsatisfied with previous local estrogen therapies are candidates for a noninvasive modality. Carbon dioxide (CO2) laser therapy, especially the fractionated type (FrCO2), has drawn considerable attention over the past two decades as a non-invasive treatment for GSM. This systematic review describes the accumulated evidence from 40 FrCO2 laser studies (3466 participants) in GSM/VVA. MEDLINE, Scopus and Cochrane databases were searched through April 2021. We analyze the effects of FrCO2 laser therapy on symptoms, sexual function, and QoL of patients with GSM/VVA. As shown in this review, FrCO2 laser therapy for GSM shows good efficacy and safety. This modality has the potential to advance female sexual wellness. Patient satisfaction was high in the studies included in this systematic review. However, there is a lack of level I evidence, and more randomized sham-controlled trials are required. Furthermore, several clinical questions, such as the number of sessions required that determine cost-effectiveness, should be addressed. Also, whether FrCO2 laser therapy may exert a synergistic effect with systemic and/or local hormonal/non-hormonal treatments, energy-based devices, and other modalities to treat GMS requires further investigation. Lastly, studies are required to compare FrCO2 laser therapy with other energy-based devices such as erbium:YAG laser and radiofrequency.


2017 ◽  
Vol 10 (2) ◽  
pp. 188-192 ◽  
Author(s):  
Ferah Rehman ◽  
Vivek Chaturvedy

ABSTRACT Soft tissue laser, such as diode and Nd:YAG lasers were initially used in soft tissue lesions because of its increased success rate. It was because of the fact that these lasers were well-absorbed by chromophores, such as hemoglobin and melanin which are found abundant in the oral mucosa. The introduction of erbium family in 1990 comprising the Er:YAG and Er,Cr:YSGG lasers made the hard tissue laser a boon for dentistry. Erbium, chromium-doped yttrium, scandium, gallium and garnet (Er,Cr:YSGG) was introduced in 1997 for the surgical needs of clinical dentistry in general practice. The erbium belongs to the rare earth which is embedded in a host crystal. The actual lasing process takes place in the Er ion Er3+. Two host crystals consisting of yttrium, aluminum, and garnet (Y3A5O12) and yttrium, scandium, gallium, and garnet (Y3Sc2Ga3O12) are added to the erbium. The interest to use these hard tissue laser in the treatment of soft tissue lesion was because of the properties of these lasers which are well-absorbed by chromophore water apart from hydroxy appetite crystals. Erbium laser energy is absorbed by collagen, hydroxyapatite, and water components. It allows the laser to cut soft tissue, tooth structure, and bone. In the noncontact mode, the incision is scalpel-like, with very little hemostasis. In contact mode, it performs soft tissue sculpting with adequate hemostasis. The Er,Cr:YSGG is the world's most advanced dental laser, which is ideal all-tissue laser because all dental tissues contain water, for the multidisciplinary dentist who performs a broad spectrum of procedures. It delivers the highest level of clinician control, operating efficiency, flexibility in tip, and accessory selection. For optimal clinical results and patient comfort in hard and soft tissue procedures, the erbium lasers have set a new standard of clinical performance. The present case series aims to highlight the various soft tissue applications of Er,Cr:YSGG (Waterlase Biolase®, Biolase, Inc, San Clemente, California, USA) in pediatric patients. How to cite this article Kumar G, Rehman F, Chaturvedy V. Soft Tissue Applications of Er,Cr:YSGG Laser in Pediatric Dentistry. Int J Clin Pediatr Dent 2017;10(2):188-192.


Medicina ◽  
2021 ◽  
Vol 57 (9) ◽  
pp. 884
Author(s):  
Kenneth P. van Knegsel ◽  
Bergita Ganse ◽  
Pascal C. Haefeli ◽  
Filippo Migliorini ◽  
Mario F. Scaglioni ◽  
...  

Background and Objectives: Wound infections provoked by alterations in microcirculation are major complications in the treatment of trochanteric femur fractures. Surgical fracture fixation on a traction table is the gold standard for treatment, but the effect on tissue microcirculation is unknown. Microcirculation could be impaired by the pull on the soft-tissue or by a release of vasoactive factors. We hypothesized that intraoperative traction impairs soft-tissue microcirculation. Materials and Methods: In 22 patients (14 women, eight men), average age 78 years (range 36–96 ± 14), with trochanteric femur fractures, non-invasive laser-Doppler spectrophotometry was used to assess oxygen saturation, hemoglobin content, and blood flow in the skin and subcutaneous tissue before and after application of traction. Measurements were recorded in nine locations around the greater trochanter at a depth of 2, 8, and 15 mm before and after fracture reduction by traction. Results: No differences were found in any depth with traction compared to without (oxygen saturation: p = 0.751, p = 0.308, and p = 0.955, haemoglobin content: p = 0.651, p = 0.928, and p = 0.926, blood flow: p = 0.829, p = 0.866, and p = 0.411). Conclusion: In this pilot study, the application of traction does not affect skin and subcutaneous microcirculation in the surgery of proximal femur fractures.


2021 ◽  
Author(s):  
Robert Stephen Mulholland

The new Morpheus8 is a novel external RFAL device that uses the proven soft tissue contraction of BodyTite in an external, non-invasive procedure. This external RF applicator, which is also powered by BodyTite, inserts up to 40 positively charged, coated electrodes 8 mm into the subcutaneous, soft tissue envelope. A monopolar ablative lesion is generated from the tip of the electrode, stimulating contraction of the FSN and adipose coagulation. The RF then flows up to the distant negative, return electrodes on the surface of the skin, providing a non-ablative thermal stimulation to the papillary dermis. The “burst” feature of the Morpheus8, delivers simultaneous multiple levels of internal coagulation in a single one second pulse, amplifying the adipose ablation and contraction effect. Studies, show, that the combination of BodyTite internal thermal coagulation and external Morpheus8 at the time of liposuction can result in 60–70% area skin contraction, greatly improving the soft tissue contours and Body shaping outcomes following lipo-contouring procedures.


2016 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Farhad Sobouti ◽  
Fatemeh Namvar ◽  
Sepideh Dadgar

Sign in / Sign up

Export Citation Format

Share Document