scholarly journals CALCULATING AND EXPERIMENTAL STUDY ON BENDING WAVE TRANSMISSION FOR TWO DIMENSIONAL #-SHAPED PLATE-STRUCTURE MODEL IN MIDDLE FREQUENCY RANGE : Study on structure-borne sound in building Part 5

Author(s):  
Osamu TANAKA ◽  
Shin-ichi KUGA
2015 ◽  
Vol 2015 ◽  
pp. 1-19
Author(s):  
Jianfei Yin ◽  
Carl Hopkins

Prediction of bending wave transmission across systems of coupled plates which incorporate periodic ribbed plates is considered using Statistical Energy Analysis (SEA) in the low- and mid-frequency ranges and Advanced SEA (ASEA) in the high-frequency range. This paper investigates the crossover from prediction with SEA to ASEA through comparison with Finite Element Methods. Results from L-junctions confirm that this crossover occurs near the frequency band containing the fundamental bending mode of the individual bays on the ribbed plate when ribs are parallel to the junction line. Below this frequency band, SEA models treating each periodic ribbed plate as a single subsystem were shown to be appropriate. Above this frequency band, large reductions occur in the vibration level when propagation takes place across successive bays on ribbed plates when the ribs are parallel to the junction. This is due to spatial filtering; hence it is necessary to use ASEA which can incorporate indirect coupling associated with this transmission mechanism. A system of three coupled plates was also modelled which introduced flanking transmission. The results show that a wide frequency range can be covered by using both SEA and ASEA for systems of coupled plates where some or all of the plates are periodic ribbed plates.


1983 ◽  
Vol S7-XXV (3) ◽  
pp. 319-326 ◽  
Author(s):  
Angel Fernandez ◽  
Jean-Louis Feybesse ◽  
Jean-Francois Mezure

1983 ◽  
Vol 126 ◽  
pp. 251-268 ◽  
Author(s):  
Takeo Nakagawa

Three velocity components of water particles in a plunging breaker over a horizontal step on the bed of a two-dimensional laboratory wave tank have been determined simultaneously by means of an elaborate flowmeter that measures the flow drag on three ‘tension threads’, with each recording a separate flow component.It is found that all three of the r.m.s. values in the plunging breaker become maximum at x/L ≈ 0·7, where x is the distance from the breaking point to the shore and L is the wavelength. It is found that both the velocity and r.m.s. values of the transverse flow component generated by the shoaling and wave breaking become comparable to those of the other two flow components.On the basis of spectral analyses it is found that major wave frequencies in both the longitudinal and vertical flow components of the original two-dimensional wave survive even after experiencing relatively strong shoaling and wave breaking, and part of the original wave energy is transferred to the transverse flow component and is located at these major frequencies. It is found that the majority of the higher-harmonic-frequency components (or turbulent fluctuations) are generated in the shoaling process and that the wave breaking provides a relatively minor contribution to the generation. Finally, it is found that, through the shoaling and wave breaking, the original wave energy is transported to a frequency range lower than the primary wave frequency (negative cascade), as well as to the higher frequency range (positive cascade) in each flow component.


Sign in / Sign up

Export Citation Format

Share Document