On characteristics of the water-particle velocity in a plunging breaker

1983 ◽  
Vol 126 ◽  
pp. 251-268 ◽  
Author(s):  
Takeo Nakagawa

Three velocity components of water particles in a plunging breaker over a horizontal step on the bed of a two-dimensional laboratory wave tank have been determined simultaneously by means of an elaborate flowmeter that measures the flow drag on three ‘tension threads’, with each recording a separate flow component.It is found that all three of the r.m.s. values in the plunging breaker become maximum at x/L ≈ 0·7, where x is the distance from the breaking point to the shore and L is the wavelength. It is found that both the velocity and r.m.s. values of the transverse flow component generated by the shoaling and wave breaking become comparable to those of the other two flow components.On the basis of spectral analyses it is found that major wave frequencies in both the longitudinal and vertical flow components of the original two-dimensional wave survive even after experiencing relatively strong shoaling and wave breaking, and part of the original wave energy is transferred to the transverse flow component and is located at these major frequencies. It is found that the majority of the higher-harmonic-frequency components (or turbulent fluctuations) are generated in the shoaling process and that the wave breaking provides a relatively minor contribution to the generation. Finally, it is found that, through the shoaling and wave breaking, the original wave energy is transported to a frequency range lower than the primary wave frequency (negative cascade), as well as to the higher frequency range (positive cascade) in each flow component.

Author(s):  
Sergey Kuznetsov ◽  
Yana Saprykina ◽  
Valentina Volkova

Type of wave breaking - plunging or spilling - depends on symmetry of waves. The spilling waves are asymmetric against horizontal axis and are practically symmetric against vertical axis so the phase shift between first and second nonlinear harmonics (or biphase) is close to zero. The plunging breaking waves have larger asymmetry against vertical axis, (biphase is close to -pi/2), and near symmetric on horizontal axis (close to saw-toothed form). Non-linear wave transformation influences on depth-induced wave breaking. Breaking index depends on relation of wave energy in frequency range of second nonlinear harmonics to wave energy in frequency range of main harmonic and on biphase. The dissipation rate of spilling breaking waves energy quadratically depends on frequency, while in plunging breaking, this dependency is practically linear for all frequencies.


2020 ◽  
Vol 12 (4) ◽  
pp. 429-436
Author(s):  
Valery A. Golunov ◽  
◽  
Vadim A. Korotkov ◽  

A method for calculating holograms for volumetric objects based on the representation of objects in the form of ensembles of virtual point sources distributed on a set of parallel planes has been proposed. The proposed method is the development of the well-known method in which objects are represented as ensemble of real point scatterers. The possibilities of the proposed method are demonstrated by calculating a hologram of a fragment of a sphere, on which 1000 points are randomly selected, at which radiation emanating from the center of the sphere is scattered. The choice of a fragment of a sphere as an object under study is due to the fact that when calculating its hologram, phase errors inherent in approximate calculations are most pronounced. The calculations were performed for the frequency range of 2...100 GHz, the sphere radius of 0.5 m, a two-dimensional hologram size of 0.65×0.65 m, and a pixel count of 512×512. It is shown that, in comparison with the known method, the proposed method makes it possible to calculate the amplitude of a hologram with satisfactory accuracy if virtual sources are placed on parallel planes in an amount of more than 64 pieces. In the case of objects that require representation in the form of an ensemble of point scatterers in the amount of more than 1000 pieces, the calculation of their holograms by the proposed method turns out to be much more efficient than the known method.


2001 ◽  
Vol 45 (03) ◽  
pp. 216-227
Author(s):  
R. Centeno ◽  
K. S. Varyani ◽  
C. Guedes Soares

An experimental program was performed with hard-chine catamaran models in regular waves. The distance between the demi-hulls of the models was changed to assess its effects on the wave-induced motions. The results allowed the study of some aspects related to catamaran motions, like the interference between the hulls and resonance frequencies. The experimental results are compared with calculations performed with a recently developed code based on a two-dimensional potential flow theory in which viscous forces are included through a cross-flow drag approach. The effect of the hull distance in the heave and pitch motion responses and the importance of the viscous forces in such hull configurations are shown.


2019 ◽  
Vol 30 ◽  
pp. 07009
Author(s):  
Naum Ginzburg ◽  
Nikolay Peskov ◽  
Vladislav Zaslavsky ◽  
Ekaterina Kocharovskaya ◽  
Andrey Malkin ◽  
...  

Based on theoretical approach and three-dimensional modeling using the CST Microwave Studio code, planar dielectric two-dimensional Bragg structures in terahertz frequency range were developed and manufactured. Proof-of-principle electrodynamic experiments on the “cold” testing of these structures were carried out. It is shown that the experimental results are in good agreement with the theoretical predicts, including the existence of the highest Q mode inside the Bragg reflection band in the absence of periodicity defects.


2015 ◽  
Vol 763 ◽  
pp. 101-104 ◽  
Author(s):  
Sang Hoon Kim

Luneburg lens is a gradient index lens that focuses the incoming wave to the opposite side of the lens without aberration. We developed a two-dimensional acoustic Luneburg lens by variable density method of space inside the lens. The lens is composed of hundreds of aluminum columns with various radii of less than 1cm. We tested the ability as sonar in the air. It focuses the incoming acoustic wave on the edge of the opposite side of the lens as well in the frequency range of 1,000Hz ~ 3,000Hz. It showed a dynamic response depending on the motion of the acoustic source. It could be a strong candidate of a next generation of sonar.


Author(s):  
Stepan Tolkachev ◽  
Victor Kozlov ◽  
Valeriya Kaprilevskaya

In this article, the results of research about stationary and secondary disturbances development behind the localized and two-dimensional roughness elements are presented. It is shown that the two-dimensional roughness element has a destabilizing effect on the disturbances induced by the three-dimensional roughness element lying upstream. In this case, the two-dimensional roughness element causes the appearance of stationary structures, and then secondary perturbations, whose frequency range lies lower than in the case of the stationary vortices excited by a three-dimensional roughness element.


2013 ◽  
Vol 26 (13) ◽  
pp. 4535-4549 ◽  
Author(s):  
Giacomo Masato ◽  
Brian J. Hoskins ◽  
Tim Woollings

Abstract This paper generalizes and applies recently developed blocking diagnostics in a two-dimensional (2D) latitude–longitude context, which takes into consideration both mid- and high-latitude blocking. These diagnostics identify characteristics of the associated wave breaking as seen in the potential temperature θ on the dynamical tropopause, particularly the cyclonic or anticyclonic direction of wave breaking (“DB index”) and the relative intensity (“RI index”) of the air masses that contribute to blocking formation. The methodology is extended to a 2D domain and a cluster technique is deployed to classify mid- and high-latitude blocking according to the wave-breaking characteristics. Midlatitude blocking is observed over Europe and Asia, where the meridional gradient of θ is generally weak, whereas high-latitude blocking is mainly present over the oceans, to the north of the jet stream, where the meridional gradient of θ is much stronger. They occur on the equatorward and poleward flank of the jet stream, respectively, where the horizontal shear ∂u/∂y is positive in the first case and negative in the second case. A regional analysis is also conducted. Warm-cyclonic blocking over the Pacific and cold-anticyclonic blocking over Europe are identified as the most persistent types and are associated with large amplitude anomalies in temperature and precipitation. Finally, the high-latitude cyclonic events seem to correlate well with low-frequency modes of variability over the Pacific and Atlantic Oceans.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 110-110
Author(s):  
A V Chihman ◽  
V N Chihman ◽  
Y E Shelepin

Earlier we proposed a model for visual processing of the optical image of Vernier targets (1996 Perception25 Supplement, 115 – 116) based on Fourier analysis of the image. Our model comprises blurring of the thin Vernier bars by the optical point-spread function followed by calculation of the two-dimensional Fourier spectrum. In our model the processing area for Fourier analysis (the receptive field size) is 5 min arc. For a Vernier target, the contrast energy in the low-spatial-frequency range is different in different orientations, and magnification of the Vernier shift changes the orientation of the oblique Fourier components. To test the model, we carried out experiments in which the stimuli were Vernier lines with additional line distractors orthogonal to the orientation of the oblique Fourier components. Thresholds for detecting Vernier displacements were determined by a 2AFC paradigm and compared with model predictions. The results are consistent with our modelling of Vernier performance as a measurement of oblique components of the 2-D Fourier spectrum.


Sign in / Sign up

Export Citation Format

Share Document