scholarly journals Modelling Bending Wave Transmission across Coupled Plate Systems Comprising Periodic Ribbed Plates in the Low-, Mid-, and High-Frequency Ranges Using Forms of Statistical Energy Analysis

2015 ◽  
Vol 2015 ◽  
pp. 1-19
Author(s):  
Jianfei Yin ◽  
Carl Hopkins

Prediction of bending wave transmission across systems of coupled plates which incorporate periodic ribbed plates is considered using Statistical Energy Analysis (SEA) in the low- and mid-frequency ranges and Advanced SEA (ASEA) in the high-frequency range. This paper investigates the crossover from prediction with SEA to ASEA through comparison with Finite Element Methods. Results from L-junctions confirm that this crossover occurs near the frequency band containing the fundamental bending mode of the individual bays on the ribbed plate when ribs are parallel to the junction line. Below this frequency band, SEA models treating each periodic ribbed plate as a single subsystem were shown to be appropriate. Above this frequency band, large reductions occur in the vibration level when propagation takes place across successive bays on ribbed plates when the ribs are parallel to the junction. This is due to spatial filtering; hence it is necessary to use ASEA which can incorporate indirect coupling associated with this transmission mechanism. A system of three coupled plates was also modelled which introduced flanking transmission. The results show that a wide frequency range can be covered by using both SEA and ASEA for systems of coupled plates where some or all of the plates are periodic ribbed plates.

2011 ◽  
Vol 189-193 ◽  
pp. 1914-1917
Author(s):  
Lin Ji

A key assumption of conventional Statistical Energy Analysis (SEA) theory is that, for two coupled subsystems, the transmitted power from one to another is proportional to the energy differences between the mode pairs of the two subsystems. Previous research has shown that such an assumption remains valid if each individual subsystem is of high modal density. This thus limits the successful applications of SEA theory mostly to the regime of high frequency vibration modeling. This paper argues that, under certain coupling conditions, conventional SEA can be extended to solve the mid-frequency vibration problems where systems may consist of both mode-dense and mode-spare subsystems, e.g. ribbed-plates.


2021 ◽  
Author(s):  
Vladimir Sergeevich Milyutin ◽  
Eugeniy Vasilevich Rogozhnikov ◽  
Kirill Petrovskiy ◽  
Dmitriy Pokamestov ◽  
Edgar Dmitriyev ◽  
...  

Abstract Frequency synchronization is a necessary operation for all wireless communication systems. Due to the wide frequency range defined for 5G NR systems, this procedure becomes critical. To ensure high transmission rates and the use of high-order modulation, up to 256 QAM for 5G communication systems, it is necessary to ensure high frequency synchronization accuracy. In this article, we have reviewed various approaches to implementing frequency synchronization and proposed, in our opinion, the most effective method for correcting the frequency shift of the signal.


Author(s):  
Lei Wang ◽  
Yifan Zhang ◽  
Muhammad Saqib Ali ◽  
Guozhu Chen ◽  
Josep M. Guerrero ◽  
...  

Aiming for the problems emerging in the PWM drive system with long cables, accurate modeling of power cables is the premise to predict and analyze the relevant phenomenon, and a proper filter design is the key solution to these problems. This paper proposes high-frequency cable models to represent the frequency-dependent characteristics, especially for the high-frequency resistance of the cable that is an easily overlooked factor but determines the damping of overvoltage. The proposed models can be used for accurately representing the cable parameters in a wide frequency range, and correctly simulating the differential mode (DM) overvoltage and common mode (CM) current, including the peak value, oscillation frequency and damping of the transient waveform. In addition, improved filter networks are proposed to suppress the DM voltage and CM current, with the merit of low losses, small volume and an excellent ability of suppressing overvoltage. The proposed cable models and the filter design have been validated in a 750W PWM drive system with 200m power cables.


1986 ◽  
Vol 108 (2) ◽  
pp. 155-164 ◽  
Author(s):  
E. Goldfracht ◽  
G. Rosenhouse

In this paper we primarily discuss a theory of power transmission and vibration energy distribution of dynamically loaded structures. The loads are random and the system comprises linked elements, which consist of machine-supported stiffened plates. Fundamentally, the theory is deterministic, but in addition it uses some features of the SEA. In fact, the analysis is intended to verify fundamental theorems of the Statistical Energy Analysis in the lower frequency range.


1990 ◽  
Vol 112 (1) ◽  
pp. 127-137 ◽  
Author(s):  
M. L. Lai ◽  
A. Soom

The prediction, by the statistical energy analysis (SEA) method, of transient vibration envelopes for coupled systems is investigated. The relation between the time-varying energy transferred between two coupled subsystems and time-varying energies of the subsystems is studied numerically and experimentally. These studies indicate that time-varying energy transmitted between two subsystems is related to the subsystem energies by an apparent time-varying coupling loss factor. It is shown that the apparent coupling loss factor approaches the asymptotic (or steady-state) coupling loss factor as response energies and transferred energies are integrated over progressively larger times. Both the apparent time-varying coupling loss factor and the asymptotic coupling loss factor, determined experimentally, are used in energy balance equations to predict the time-varying vibration envelopes of a system of two point-coupled plates and the results are compared. Although overall response predictions are similar, considerable differences are noted in individual frequency bands. However, no general method for a priori determination of the apparent time-varying coupling loss factor is suggested.


2011 ◽  
Vol 99-100 ◽  
pp. 354-357
Author(s):  
Xian Feng Huang ◽  
Jun Liu ◽  
Yan Yang

Coincidence effect which occurs in a certain frequency range will impairs the sound insulation of walls. For the purpose to predict the phenomenon of coincidence effect that is unlikely predicted theoretically by the mass law, the Statistical Energy Analysis (SEA) theory are adopted in studying coincidence effect of sound insulation of the light weight single-leaf wall. The comparison among predicted by SEA, by mass law and measured was performed. Therefore, the comparison results show that sound insulation prediction by SEA is more precise and agrees with the measured date. Moreover, the coincidence effect and its effect on sound insulation were predicted by SEA. Eventually, it is likely to select appropriate building materials and configuration to achieve a better sound environment theoretically.


Author(s):  
T. Lafont ◽  
N. Totaro ◽  
A. Le Bot

This paper is a discussion of the hypothesis of weak coupling in statistical energy analysis (SEA). The examples of coupled oscillators and statistical ensembles of coupled plates excited by broadband random forces are discussed. In each case, a reference calculation is compared with the SEA calculation. First, it is shown that the main SEA relation, the coupling power proportionality, is always valid for two oscillators irrespective of the coupling strength. But the case of three subsystems, consisting of oscillators or ensembles of plates, indicates that the coupling power proportionality fails when the coupling is strong. Strong coupling leads to non-zero indirect coupling loss factors and, sometimes, even to a reversal of the energy flow direction from low to high vibrational temperature.


Sign in / Sign up

Export Citation Format

Share Document