scholarly journals PRESUMPTION FOR COMPRESSIVE STRENGTH OF HIGH-STRENGTH CONCRETE SUBJECTED TO HIGH TEMPERATURE HEATING

Author(s):  
Ken-ichi ICHISE ◽  
Shinji KAWABE
2001 ◽  
Vol 13 (3) ◽  
pp. 230-234 ◽  
Author(s):  
Maria de Lurdes B. C. Reis ◽  
I. Cabrita Neves ◽  
A. J. B. Tadeu ◽  
João Paulo C. Rodrigues

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Neno Torić ◽  
Ivica Boko ◽  
Bernardin Peroš

This paper presents an experimental study of behaviour of high-strength concrete at high temperature. Reduction of the mechanical properties of concrete was determined starting from the period when the concrete specimens were heated to the maximum temperature and cooled down to ambient temperature and the additional 96 hours after the initial cooling of the specimens. The study includes determination of compressive strength, dynamic and secant modulus of elasticity, and stress-strain curves of concrete specimens when exposed to temperature level up to 600°C. The study results were compared with those obtained from other studies, EN 1994-1-2 and EN 1992-1-2. Tests point to the fact that compressive strength of concrete continues to reduce rapidly 96 hours after cooling of the specimens to ambient temperature; therefore indicating that the mechanical properties of concrete have substantial reduction after being exposed to high temperature. The study of the dynamic and secant modulus of elasticity shows that both of the properties are reduced but remain constant during the period of 96 hours after cooling. The level of postfire reduction of compressive strength of the analyzed concrete is substantial and could significantly affect the postfire load bearing capacity of a structure.


2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
Hussein M. Elsanadedy

High-strength concrete (HSC) has several well-known technical, aesthetic, and economic advantages over normal-strength concrete (NSC), which explains the increasing popularity of the former material in the construction domain. As in the case of NSC, however, high temperature adversely affects HSC mechanical properties even more than in NSC, as indicated by the many studies performed so far on HSC at high temperature (hot properties) or past a thermal cycle at high temperature (residual properties). Since many code provisions concerning concrete properties versus high temperature were developed for ordinary concrete and the available models (in terms of stress-strain relationship) come mostly from the tests on NSC—as the tests on HSC are less numerous—developing predictive relationships for HSC exposed to high temperature is still an open issue, especially with reference to many parameters affecting concrete compressive strength, like temperature as such, heating rate, water-to-binder ratio, and strength in compression, to cite the most relevant parameters. To this purpose, a large database (more than 600 tests) is examined in this paper, which is focused on HSC residual properties and on the variables affecting its residual strength. Available design models from various guidelines, standards, codes, and technical reports are tested against the database, and new regression-based models and design formulae are proposed for HSC strength in compression, after the exposure to high temperature.


2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


2014 ◽  
Vol 1014 ◽  
pp. 49-52
Author(s):  
Xiao Ping Su

With the wide application of high strength concrete in the building construction,the risk making concrete subject to high temperatures during a fire is increasing. Comparison tests on the mechanical properties of high strength concrete (HSC) and normal strength concrete (NSC) after the action of high temperature were made in this article, which were compared from the following aspects: the peak stress, the peak strain, elasticity modulus, and stress-strain curve after high temperature. Results show that the laws of the mechanical properties of HSC and NSC changing with the temperature are the same. With the increase of heating temperature, the peak stress and elasticity modulus decreases, while the peak strain grows rapidly. HSC shows greater brittleness and worse fire-resistant performance than NSC, and destroys suddenly. The research and evaluation on the fire-resistant performance of HSC should be strengthened during the structural design and construction on the HSC buildings.


2014 ◽  
Vol 567 ◽  
pp. 381-386 ◽  
Author(s):  
Nasir Shafiq ◽  
Muhd Fadhil Nuruddin ◽  
Ali Elheber Ahmed Elshekh ◽  
Ahmed Fathi Mohamed Salih

In order to improve the mechanical properties of high strength concrete, HSC, several studies have been conducted using fly ash, FA. Researchers have made it possible to achieve 100-150MPa high strength concrete. Despite the popularity of this FAHSC, there is a major shortcoming in that it becomes more brittle, resulting in less than 0.1% tensile strain. The main objective of this work was to evaluate the fresh and hardened properties of FAHSC utilizing chopped basalt fiber stands, CBFS, as an internal strengthening addition material. This was achieved through a series of experimental works using a 20% replacement of cement by FA together with various contents of CBFS. Test results of concrete mixes in the fresh state showed no segregation, homogeneousness during the mixing period and workability ranging from 60 to 110 mm. Early and long terms of compressive strength did not show any improvement by using CBFS; in fact, it decreased. This was partially substituted by the effect of FA. Whereas, the split and flexural strengths of FASHC were significantly improved with increasing the content of CBFS as well as the percentage of the split and flexural tensile strength to the compressive strength. Also, test results showed a progressive increase in the areas under the stress-strain curves of the FAHSC strains after the CBFS addition. Therefore, the brittleness and toughness of the FAHSC were enhanced and the pattern of failure moved from brittle failure to ductile collapse using CBFS. It can be considered that the CBFS is a suitable strengthening material to produce ductile FAHSC.


Sign in / Sign up

Export Citation Format

Share Document