scholarly journals MEMBRANE ACTION OF FLOOR SLABS IN FIRE (PART 1): LOAD-BEARING FIRE TESTS OF A COMPOSITE FLOORING SYSTEM COMPOSED OF RC SLABS AND AN UNPROTECTED STEEL BEAM

2021 ◽  
Vol 86 (785) ◽  
pp. 1106-1116
Author(s):  
Takeo HIRASHIMA ◽  
Koichi KINOSHITA ◽  
Toru YOSHIDA ◽  
Junichi SUZUKI ◽  
Fuminobu OZAKI ◽  
...  
2012 ◽  
Vol 628 ◽  
pp. 156-160
Author(s):  
In Kyu Kwon ◽  
Hyung Jun Kim ◽  
Heung Youl Kim ◽  
Bum Yean Cho ◽  
Kyung Suk Cho

Structural steel has been used since the early 1970’s in Korea as primary structural members such as columns, beams, and trusses. The materials have much higher strength such as fast construction, high load bearing capacity, high construction quality but those have a fatal weakness as well. Load-bearing capacity is going down when the structural members are contained in fire condition. Therefore, to protect the structural members made of steels from the heat energy the fire resistance performance required. Generally, the fire resistance performance have evaluated from the exact fire tests in fire furnaces. But the evaluation method takes much more time and higher expenses so, the engineering method requires. The engineering method not only adopts a science but also an engineering experience. In this paper, to make various data-bases for evaluation of structural members such as columns(H-section, RHS), beams, loaded fire tests were conducted and derived not only each limiting temperature but also fire resistance respectively.


2015 ◽  
Vol 6 (2) ◽  
pp. 147-154
Author(s):  
Eva Caldová ◽  
František Wald ◽  
Anna Kuklíková

The subject of this paper is a description of experimental programme of timber-fibre concrete floor in fire. Furnace test was performed on one full-size floor specimen at the Fire testing laboratory PAVUS. Floor specimen was 4, 5 m long and 3 m wide, consisting of 60 mm fibre concrete topping on plywood formwork, connected to GL beams. It was subjected the standard fire for over 150 min. The membrane effect of the floor was progressively activated and the fire performance of timber-fibre concrete floor was better comparing to traditional design method. The project is a part of the experimental research that deals with the effect of membrane action of composite timber fibre reinforced floor slabs exposed to fire which is based on previous research on steel fibre reinforced concrete slabs. The main objective of the project is the preparation of the analytical model which can predict the fire resistance of such floors with dispersed reinforcement.


2012 ◽  
Vol 238 ◽  
pp. 621-624 ◽  
Author(s):  
Guang Yong Wang ◽  
Xing Qiang Wang ◽  
Guang Wei Liu

A fire performance finite element (FE) model of space grid structures in fire and after fire is proposed, and deformation, stress redistribution, failure modes of grid structures are also studied. The result shows that tensile membrane action arises when the grid is loaded after fire, and the load bearing capacity after fire is reduced by fire damage.


2012 ◽  
Vol 249-250 ◽  
pp. 1057-1062
Author(s):  
M. Zeinoddini ◽  
S.A. Hosseini ◽  
M. Daghigh ◽  
S. Arnavaz

Previous researchers have tried to predict the response of different types of structures under elevated temperatures. The results are important in preventing the collapse of buildings in fire. Post-fire status of the structures is also of interest for ensuring the safety of rescue workers during the fire and in the post-fire situations. Determining the extent of the structural damage left behind a fire event is necessary to draw up adequate repair plans. Connections play an important role on the fire performance of different structures. Due to the high cost of fire tests, adequate experimental data about a broad range of connections is not available. A vulnerable type of such connections to fire is the weld connections between I-shape beams and cylindrical columns in oil platform topsides. Considering the high probability of fire in oil platforms, study of the behaviour of these connections at elevated temperatures and in the post-fire, is of great importance. In the current study, eight small scale experimental fire tests on welded connections between I-shape beams and cylindrical columns have been conducted. Four tests are aimed at investigating the structural performance of this connection at elevated temperature. In other tests, post-fire behaviour of these connections has been studied to investigate their residual structural strength.


2013 ◽  
Vol XXX (60 (2/13)) ◽  
pp. 189-202
Author(s):  
Mariusz Maślak ◽  
◽  
Małgorzata Snela
Keyword(s):  

Author(s):  
Yevhen Dmytrenko

Traditional methods of calculation of beam constructions of floors and coverings of industrial buildings assume their consideration when calculating separately from the frame structures, in particular, reinforced concrete slabs, without taking into account their joint work, which leads to a significant margin of safety. Today in Ukraine there is a significant number of industrial buildings and structures that need strengthening and reconstruction. In this regard, of particular importance are studies of the actual load-bearing capacity of the frames of single-storey and multi-storey industrial buildings, and both in the reconstruction and in new construction, the results of which will significantly reduce costs and more rationally design structures. At the same time, one of the most relevant areas is the study of the joint work of metal load-bearing structures with prefabricated reinforced concrete structures of rigid disks of coatings and floors in their calculation.           Moreover, in the national building codes, as well as in the educational and methodological literature, the calculation methods of taking into account the joint work of such constructions are not fully covered. The purpose of this work is to estimate the reduction of mass of the metal beam structure in its calculation in bending, taking into account the joint work with the rigid disk of the floor consist of precast concrete. As part of the study, the calculation of the floor beam according to the traditional calculation scheme - without taking into account the joint work with the floor slab, the calculation of its cross-section taking into account the joint work with floor slabs and experimental numerical study of the floor by the finite element method. Modeling of the floor fragment was performed in the software packages "SCAD Office" and "LIRA CAD 2019". Numerical research is aimed at verifying the feasibility of using the calculation methodology of DBN B.2.6-98-2009 to determine the effective width of the shelf when calculating the T-sections for prefabricated reinforced concrete slabs, which are included in the joint work with the floor beams. A comparative analysis of the obtained cross-section of the beam with the beam which was previously calculated by the traditional method of calculation  in stresses in the most dangerous cross section and the total mass of the beams. According to the results of the analysis, the correctness of the application of the above normative method for determining the effective width of the shelf of T-bending reinforced concrete elements was confirmed.


2018 ◽  
Vol 163 ◽  
pp. 07004 ◽  
Author(s):  
Wojciech Węgrzyński ◽  
Piotr Turkowski

The origins of standardised fire testing can be traced back to 1870’s, and the origin of the standard temperature-time curve to 1917. This approach, based on a 19th-century intuition is still in use up to this day, to design the 21st-century structures. Standardized fire-testing ultimately disregards the conservation of energy in the fire, as in every test the resulting temperature of the test must be the same (precisely as the temp.-time curve). To maintain this, different amount of heat is required in every test, which means that every time a different fire is modelled within the furnace. The differences between furnace fire sizes are ignored in the certification process, but can be interesting for fire researchers to understand how different materials behave in fire conditions. In this paper, Authors explore this topic by investigating the energy balance within the furnace, and comparing different fire tests together.


Sign in / Sign up

Export Citation Format

Share Document