scholarly journals ANALYSIS OF CONDENSER PERFORMANCE DESALINATION OF SOLAR ENERGY OF THE NATURAL VACUUM SYSTEM AT THE TIME OF LOW RADIATION INTENSITY

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Himsar Ambarita ◽  
Eko Yohanes Setiawan

Natural desalination device solar vacuum system has a main component of evaporator, condenser, and solar collector. The production of clean water from this appliance is strongly influenced by the performance of the condenser.On this research, condenser performance is performed when the intensity of solar radiation is low. The measurement data for 2 days when the sky is not bright is used to perform the condenser performance analysis. The result of analysis on the first day was found that the working energy of condensorsirippada was 141 J / day, while if without 29 J / day fins. So that the effectiveness of fins of 112 J / day. While on the second day found heat transfer using 122 J / day fins without fins 25 J / day to obtain fin effectiveness of 97 J / day. This is very influential on clean water production. The condensate rate on the 1st day is highest at 0.00018 kg / min, with an average of one day experiment 0.0001 kg / min, yielding fresh water of 0.8 Liter. On the 2nd day the highest condensate rate is 0.00019 kg / min with an average of condensate rate for one day 0.00011 kg / min, yielding fresh water of 0.81 Liter.

Author(s):  
Jiaxing Xu ◽  
Tingxian Li ◽  
Taisen Yan ◽  
Si Wu ◽  
Minqiang Wu ◽  
...  

Fresh water scarcity is a globally significant challenge threatening the development of human society. Sorption-based atmospheric water harvesting offers an appealing way to solve this challenge by extracting clean water...


Author(s):  
Qunzhi Zhu ◽  
Yongguang Li ◽  
Lijuan Mu ◽  
Yun Cui

Conversion of solar energy into heat is a common way to explore the clean and renewable energy source. Generally, a spectrally selective coating should be deposited to the solar-absorbing surface of the solar collector in order to reduce thermal loss emitted away from the surface in the form of thermal radiation. Nanofluids can be filled into a flat plate solar collector to absorb the solar radiation directly. The absorbance of the nanofluid in the solar spectrum may be tuned by various nanoparticles of different materials, sizes and mass fractions. In this paper, a theoretical investigation is carried out to model absorption, scattering and extinction of solar radiation within the nanofluid and to model the heat transfer within the liquid film in the direct solar absorption collector. The predicted extinction coefficient is much lower than the measured value in visible spectrum for the SiO2-water nanofluid. The calculated average temperature increase in the outlet of the collector using the measured radiative properties agrees with the measured value while that applying the predicted radiative properties is significantly lower. Nevertheless, the agreement in the predicted and the measured extinction coefficients of the TiO2-water nanofluid is reasonably good within the solar spectrum. The calculated average temperature increase is close to the measurement value. This work is helpful to understand radiative transport and heat transfer of direct solar absorption collectors using nanofluids.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Bo Chen ◽  
Yu-zhou Sun ◽  
Gan-jun Wang ◽  
Ling-yan Duan

This paper aims to carry out the condition assessment on solar radiation model and thermal loading of bridges. A modification factor is developed to change the distribution of solar intensities during a whole day. In addition, a new solar radiation model for civil engineering structures is proposed to consider the shelter effects induced by cloud, mountains, and surrounding structures. The heat transfer analysis of bridge components is conducted to calculate the temperature distributions based on the proposed new solar radiation model. By assuming that the temperature along the bridge longitudinal direction is constant, one typical bridge segment is specially studied. Fine finite element models of deck plates and corrugate sheets are constructed to examine the temperature distributions and thermal loading of bridge components. The feasibility and validity of the proposed solar radiation model are investigated through detailed numerical simulation and parametric study. The numerical results are compared with the field measurement data obtained from the long-term monitoring system of the bridge and they shows a very good agreement in terms of temperature distribution in different time instants and in different seasons. The real application verifies effectiveness and validity of the proposed solar radiation and heat transfer analysis.


2020 ◽  
Vol 14 ◽  

Fresh water supplies are among the most limiting conditions in arid regions. Drinking water shortage is chronic, acute and widespread in North Africa, the Middle East and South Asia. The extraction of fresh water from the atmosphere has been adopted and developed as a new technology to provide water in remote areas. This paper concentrates on the extracting of potable water from air in remote areas using solar energy. A theoretical study for extracting water from atmospheric air is presented and performance of water production system based on standalone PV system was simulated and evaluated for two sites in Egypt; namely, Hurghada and Khargha Oasis. The unit extracts water by using solar thermal energy as the heating source for air and solar photovoltaic energy for supplying water production system driven fan. Perturb and observe (P&O) method for maximum power point tracking (MPPT) has been designed and simulated for the proposed PV system. A Mathematical and simulation models using MATLAB/ SIMULINK software have been developed for evaluating the performance of the proposed system. The effect of climate conditions; ambient temperature and solar radiation on the PV system output power based on P&O controller was also demonstrated. It was found that more amount of water from atmosphere can be extracted from densely humid and highly solar radiation regions.


Sign in / Sign up

Export Citation Format

Share Document