Seismicity and tectonics of the North African-Eurasian plate boundary (Azores-Iberia-Tunisia)

1986 ◽  
Author(s):  
A.F. Udias ◽  
A.F. Espinosa ◽  
J. Mezcua ◽  
E. Buforn ◽  
R. Vegas ◽  
...  
2021 ◽  
Author(s):  
Fabien Caroir ◽  
Frank Chanier ◽  
Virginie Gaullier ◽  
Julien Bailleul ◽  
Agnès Maillard-Lenoir ◽  
...  

<p>The Anatolia-Aegean microplate is currently extruding toward the South and the South-West. This extrusion is classically attributed to the southward retreat of the Aegean subduction zone together with the northward displacement of the Arabian plate. The displacement of Aegean-Anatolian block relative to Eurasia is accommodated by dextral motion along the North Anatolian Fault (NAF), with current slip rates of about 20 mm/yr. The NAF is propagating westward within the North Aegean domain where it gets separated into two main branches, one of them bordering the North Aegean Trough (NAT). This particular context is responsible for dextral and normal stress regimes between the Aegean plate and the Eurasian plate. South-West of the NAT, there is no identified major faults in the continuity of the NAF major branch and the plate boundary deformation is apparently distributed within a wide domain. This area is characterised by slip rates of 20 to 25 mm/yr relative to Eurasian plate but also by clockwise rotation of about 10° since ca 4 Myr. It constitutes a major extensional area involving three large rift basins: the Corinth Gulf, the Almiros Basin and the Sperchios-North Evia Gulf. The latter develops in the axis of the western termination of the NAT, and is therefore a key area to understand the present-day dynamics and the evolution of deformation within this diffuse plate boundary area.</p><p>Our study is mainly based on new structural data from field analysis and from very high resolution seismic reflexion profiles (Sparker 50-300 Joules) acquired during the WATER survey in July-August 2017 onboard the R/V “Téthys II”, but also on existing data on recent to active tectonics (i.e. earthquakes distribution, focal mechanisms, GPS data, etc.). The results from our new marine data emphasize the structural organisation and the evolution of the deformation within the North Evia region, SW of the NAT.</p><p>The combination of our structural analysis (offshore and onshore data) with available data on active/recent deformation led us to define several structural domains within the North Evia region, at the western termination of the North Anatolian Fault. The North Evia Gulf shows four main fault zones, among them the Central Basin Fault Zone (CBFZ) which is obliquely cross-cutting the rift basin and represents the continuity of the onshore Kamena Vourla - Arkitsa Fault System (KVAFS). Other major fault zones, such as the Aedipsos Politika Fault System (APFS) and the Melouna Fault Zone (MFZ) played an important role in the rift initiation but evolved recently with a left-lateral strike-slip motion. Moreover, our seismic dataset allowed to identify several faults in the Skopelos Basin including a large NW-dipping fault which affects the bathymetry and shows an important total vertical offset (>300m). Finally, we propose an update of the deformation pattern in the North Evia region including two lineaments with dextral motion that extend southwestward the North Anatolian Fault system into the Oreoi Channel and the Skopelos Basin. Moreover, the North Evia Gulf domain is dominated by active N-S extension and sinistral reactivation of former large normal faults.</p>


2019 ◽  
Vol 56 (12) ◽  
pp. 1297-1308 ◽  
Author(s):  
Jeffrey A. Karson ◽  
Bryndís Brandsdóttir ◽  
Páll Einarsson ◽  
Kristján Sæmundsson ◽  
James A. Farrell ◽  
...  

Major transform fault zones link extensional segments of the North American – Eurasian plate boundary as it transects the Iceland Hotspot. Changes in plate boundary geometry, involving ridge jumps, rift propagation, and related transform fault zone migration, have occurred as the boundary has moved relative to the hotspot. Reconfiguration of transform fault zones occurred at about 6 Ma in northern Iceland and began about 3 Ma in southern Iceland. These systems show a range of different types of transform fault zones, ranging from diffuse, oblique rift zones to narrower, well-defined, transform faults oriented parallel to current plate motions. Crustal deformation structures correlate with the inferred duration and magnitude of strike-slip displacements. Collectively, the different expressions of transform zones may represent different stages of development in an evolutionary sequence that may be relevant for understanding the tectonic history of plate boundaries in Iceland as well as the structure of transform fault zones on more typical parts of the mid-ocean ridge system.


Author(s):  
Klaus-G. Hinzen ◽  
Mustapha Meghraoui ◽  
Nejib Bahrouni ◽  
Yassine Houla ◽  
Sharon K. Reamer

AbstractIn the past, several destructive earthquakes have occurred in the North African Atlas Mountain ranges located along the Africa–Eurasia plate boundary. Although the region is rich with impressive archaeological sites, including those in modern Tunisia, few comprehensive archaeoseismological studies have been conducted. Historic sources account at least three damaging earthquakes in the Kairouan area in central Tunisia between AD 859 and 1041. Little is known about which faults triggered these earthquakes or the size of these events. The water supply of the city of Kairouan depended on a 32-km-long aqueduct with a large bridge (now partially collapsed) at the confluence of the de Mouta and Cherichira rivers. The original bridge of Roman construction was retrofitted twice during the Aghlabid period (AD 800–903) and probably in AD 995 during the Fatimid period. The ruined section of the bridge shows damage which might be related to the AD 859 earthquake shaking. Here, we present a detailed study of the history, the status and the damage of the Cherichira aqueduct bridge using previous historic accounts and written works, a 3D laser scan model, local geological and seismological characteristics, and include results of radiocarbon dating and a timeline of events. In addition to earthquake ground motions, we consider severe flash floods on the bridge as a potential cause of the damage. We estimate the severity of such flash floods and develop a model with 18 earthquake scenarios on local reverse and strike-slip faults with magnitudes between MW 6.1 and 7.2. While a few damage patterns might be indicative of flooding, most damage can be attributed to earthquakes. It is highly probable that the earthquake in AD 859 caused enough damage to the Aghlabid bridge to render it dysfunctional; however, to resolve the question of whether another earthquake in AD 911 or 1041 caused the complete destruction of the previously retrofitted aqueduct by the Fatimids requires dating of additional sections of the bridge.


Author(s):  
Philip England ◽  
Andrew Howell ◽  
James Jackson ◽  
Costas Synolakis

The dominant uncertainties in assessing tsunami hazard in the Eastern Mediterranean are attached to the location of the sources. Reliable historical reports exist for five tsunamis associated with earthquakes at the Hellenic plate boundary, including two that caused widespread devastation. Because most of the relative motion across this boundary is aseismic, however, the modern record of seismicity provides little or no information about the faults that are likely to generate such earthquakes. Independent geological and geophysical observations of two large historical to prehistorical earthquakes, in Crete and Rhodes, lead to a coherent framework in which large to great earthquakes occurred not on the subduction boundary, but on reverse faults within the overlying crust. We apply this framework to the less complete evidence from the remainder of the Hellenic plate boundary zone, identifying candidate sources for future tsunamigenic earthquakes. Each such source poses a significant hazard to the North African coast of the Eastern Mediterranean. Because modern rates of seismicity are irrelevant to slip on the tsunamigenic faults, and because historical and geological data are too sparse, there is no reliable basis for a probabilistic assessment of this hazard, and a precautionary approach seems advisable.


1999 ◽  
Vol 249 (4) ◽  
pp. 455-461
Author(s):  
El Hassan El Mouden ◽  
Mohammed Znari ◽  
Richard P. Brown

2020 ◽  
Vol 10 (24) ◽  
pp. 9147
Author(s):  
Imane Es-Safi ◽  
Hamza Mechchate ◽  
Amal Amaghnouje ◽  
Anna Calarco ◽  
Smahane Boukhira ◽  
...  

The seeds of Ammodaucus leucotrichus Cosson and Durieu have been used in the North African Sahara as a traditional medicine to treat diabetes. The present study investigates the antidiabetic, antihyperglycemic, and anti-inflammatory properties of the defatted hydroethanolic extract of Ammodaucus leucotrichus (DHEAM). The antidiabetic and the antihyperglycemic studies were assessed on alloxan-induced diabetic with orally administered doses of DHEAM (100 and 200 mg/kg). At the same time, its anti-inflammatory propriety was evaluated by measuring edema development in the Wistar rats paw induced with carrageenan. Treatment of diabetic mice with DHEAM for four weeks managed their high fasting blood glucose levels, improved their overall health, and also revealed an excellent antihyperglycemic activity. Following the anti-inflammatory results, DHEAM exhibited a perfect activity. HPLC results revealed the presence of seven molecules (chlorogenic acid, 3-p-coumaroylquinic acid, gallic acid, ferulic acid, myricetin, quercetin, luteolin). This work indicates that the DHEAM has an important antidiabetic, antihyperglycemic, and anti-inflammatory effect that can be well established as a phytomedicine to treat diabetes.


2011 ◽  
Vol 289 (1-4) ◽  
pp. 135-149 ◽  
Author(s):  
João C. Duarte ◽  
Filipe M. Rosas ◽  
Pedro Terrinha ◽  
Marc-André Gutscher ◽  
Jacques Malavieille ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 2187
Author(s):  
Caroline Cazin ◽  
Yasmine Boumerdassi ◽  
Guillaume Martinez ◽  
Selima Fourati Ben Mustapha ◽  
Marjorie Whitfield ◽  
...  

Acephalic spermatozoa syndrome (ASS) is a rare but extremely severe type of teratozoospermia, defined by the presence of a majority of headless flagella and a minority of tail-less sperm heads in the ejaculate. Like the other severe monomorphic teratozoospermias, ASS has a strong genetic basis and is most often caused by bi-allelic variants in SUN5 (Sad1 and UNC84 domain-containing 5). Using whole exome sequencing (WES), we investigated a cohort of nine infertile subjects displaying ASS. These subjects were recruited in three centers located in France and Tunisia, but all originated from North Africa. Sperm from subjects carrying candidate genetic variants were subjected to immunofluorescence analysis and transmission electron microscopy. Moreover, fluorescent in situ hybridization (FISH) was performed on sperm nuclei to assess their chromosomal content. Variant filtering permitted us to identify the same SUN5 homozygous frameshift variant (c.211+1_211+2dup) in 7/9 individuals (78%). SUN5 encodes a protein localized on the posterior part of the nuclear envelope that is necessary for the attachment of the tail to the sperm head. Immunofluorescence assays performed on sperm cells from three mutated subjects revealed a total absence of SUN5, thus demonstrating the deleterious impact of the identified variant on protein expression. Transmission electron microscopy showed a conserved flagellar structure and a slightly decondensed chromatin. FISH did not highlight a higher rate of chromosome aneuploidy in spermatozoa from SUN5 patients compared to controls, indicating that intra-cytoplasmic sperm injection (ICSI) can be proposed for patients carrying the c.211+1_211+2dup variant. These results suggest that the identified SUN5 variant is the main cause of ASS in the North African population. Consequently, a simple and inexpensive genotyping of the 211+1_211+2dup variant could be beneficial for affected men of North African origin before resorting to more exhaustive genetic analyses.


Sign in / Sign up

Export Citation Format

Share Document