A novel application of high-resolution camcorders for the marine environment

1992 ◽  
Author(s):  
Henry Chezar ◽  
J.C. Erickson
Author(s):  
M. Doukari ◽  
K. Topouzelis

Abstract. Marine habitat mapping is essential for updating existing information, preserving, and protecting the marine environment. Unmanned Aerial Systems (UAS) are an important tool for monitoring and mapping coastal and marine environment because of their ability to provide very high-resolution aerial imagery.Environmental conditions have a critical role in marine mapping using UAS. This is due to the limitations of UAS surveys in coastal areas, i.e. the environmental conditions prevailing in the area. The limitations of weather and oceanographic conditions affecting the quality of marine data led to the creation of a UAS protocol for the acquisition of reliable marine information. The produced UAS Data Acquisition Protocol consists of three main categories: (i) Morphology of the study area, (ii) Environmental conditions, (iii) Flight parameters. These categories include the parameters that must be considered for marine habitat mapping.The aim of the present study is the accuracy assessment of the UAS protocol for marine habitat mapping through experimental flights. For the accuracy assessment of the UAS protocol, flights on different dates and environmental conditions were conducted, over a study area. The flight altitude was the same for all the missions, so the results were comparable. The high-resolution orthophoto maps derived from each date of the experiment were classified. The classification maps show several differences in the shape and size of the marine habitats which are directly dependent on the conditions that the habitats were mapped. A change detection comparison was conducted in pairs to examine the exact changes between the classified maps.The results emphasize the importance of the environmental conditions prevailing in an area during the mapping of marine habitats. The present study proves that the optimal flight conditions that are proposed of the UAS Data Acquisition protocol, respond to the real-world conditions and are important to be considered for an accurate and reliable mapping of the marine environment.


2000 ◽  
Vol 366 (5) ◽  
pp. 481-487 ◽  
Author(s):  
G. Neurauter ◽  
I. Klimant ◽  
O. S. Wolfbeis

2020 ◽  
Author(s):  
Clement Bricaud ◽  
Miguel Castrillo

<div>Mercator Ocean International operates global high-resolution forecasting systems in the framework of the Copernicus Marine Environment Monitoring Service. The current system has a 1/12° resolution. In order to prepare the increase of its resolution, the development of a new global configuration has started in 2019, with a higher resolution (1/36°). This configuration is also expected in the H2020 IMMERSE project as a demonstrator for the HPC improvements developed in NEMO OGCM and in the H2020 ESIWACE2 project as a demonstrator for production runs at unprecedented resolution on pre-exascale supercomputers. We present here the first 0RCA36 configuration and the first results of a simulation performed on several months forced</div><div>by ERAinterim with NEMO 4. We compare it with its twin global ¼° and 1/12° configurations. We also present some results of NEMO 4/ORCA36 performances and scalability, performed by BSC on Mare Nostrum supercomputer.</div>


1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


2019 ◽  
Vol 42 ◽  
Author(s):  
J. Alfredo Blakeley-Ruiz ◽  
Carlee S. McClintock ◽  
Ralph Lydic ◽  
Helen A. Baghdoyan ◽  
James J. Choo ◽  
...  

Abstract The Hooks et al. review of microbiota-gut-brain (MGB) literature provides a constructive criticism of the general approaches encompassing MGB research. This commentary extends their review by: (a) highlighting capabilities of advanced systems-biology “-omics” techniques for microbiome research and (b) recommending that combining these high-resolution techniques with intervention-based experimental design may be the path forward for future MGB research.


1994 ◽  
Vol 144 ◽  
pp. 593-596
Author(s):  
O. Bouchard ◽  
S. Koutchmy ◽  
L. November ◽  
J.-C. Vial ◽  
J. B. Zirker

AbstractWe present the results of the analysis of a movie taken over a small field of view in the intermediate corona at a spatial resolution of 0.5“, a temporal resolution of 1 s and a spectral passband of 7 nm. These CCD observations were made at the prime focus of the 3.6 m aperture CFHT telescope during the 1991 total solar eclipse.


1994 ◽  
Vol 144 ◽  
pp. 541-547
Author(s):  
J. Sýkora ◽  
J. Rybák ◽  
P. Ambrož

AbstractHigh resolution images, obtained during July 11, 1991 total solar eclipse, allowed us to estimate the degree of solar corona polarization in the light of FeXIV 530.3 nm emission line and in the white light, as well. Very preliminary analysis reveals remarkable differences in the degree of polarization for both sets of data, particularly as for level of polarization and its distribution around the Sun’s limb.


Sign in / Sign up

Export Citation Format

Share Document