scholarly journals A relativistic formulation of the de la Peña-Cetto stochastic quantum mechanics

2018 ◽  
Vol 64 (2) ◽  
pp. 158
Author(s):  
Alejandro Cabo Montes de Oca ◽  
A. González Lezcano

A covariant generalization of a non-relativistic stochastic quantum mechanics introduced by de la Peña and Cetto is formulated. The analysis is done in space-time and avoids the use of a non-covariant time evolution parameter in order to search for Lorentz invariance. The covariant form of the set of iterative equations for the joint coordinate and momentum distribution function Q(x; p) is derived and expanded in power series of the coupling of the particle with the stochastic forces. Then, particular solutions of the zeroth order in the charge of the iterative equations for Q(x; p) are considered. For them, it follows that the space-time probability density ρ(x) and the function S(x) which gradient defines the mean value of the momentum at the space time point x, define a complex function ψ(x) which exactly satisfies the Klein-Gordon (KG) equation. These results for the zeroth order solution reproduce the ones formerly and independently derived in the literature. It is alsoargued that when the KG solution is either of positive or negative energy, the total number of particles conserves in the random motion. Other solutions for the joint distribution function in lowest order, satisfying the positive condition are also presented here. The are consistent with the assumed lack of stochastic forces implied by the zeroth order equations. It is also argued that such joint distributions, after considering the action of the stochastic forces, might furnish an explanation of the quantum mechanical properties, as associated to ensembles of particles in which the vacuum makes such particles behave in a similar way as Couder’s droplets moving over oscillating liquid surfaces. Some remarks on the solutions of the positive joint distribution problem proposed in the Olavos’s analysis are also presented.

2009 ◽  
Vol 21 (02) ◽  
pp. 155-227 ◽  
Author(s):  
RODERICH TUMULKA

The Ghirardi–Rimini–Weber (GRW) theory is a physical theory that, when combined with a suitable ontology, provides an explanation of quantum mechanics. The so-called collapse of the wave function is problematic in conventional quantum theory but not in the GRW theory, in which it is governed by a stochastic law. A possible ontology is the flash ontology, according to which matter consists of random points in space-time, called flashes. The joint distribution of these points, a point process in space-time, is the topic of this work. The mathematical results concern mainly the existence and uniqueness of this distribution for several variants of the theory. Particular attention is paid to the relativistic version of the GRW theory that was developed in 2004.


2017 ◽  
Vol 31 (23) ◽  
pp. 1750168 ◽  
Author(s):  
F. Cardone ◽  
G. Albertini ◽  
D. Bassani ◽  
G. Cherubini ◽  
E. Guerriero ◽  
...  

A mole of Mercury was suitably treated by ultrasound in order to generate in it the same conditions of local Lorentz invariance violation that were generated in a sonicated cylindrical bar of AISI 304 steel and that are the cause of neutron emission during the sonication. After 3 min, part of the mercury turned into a solid material which turned out to contain isotopes having a different mass (higher and lower) with respect to the isotopes already present in the initial material (mercury). These transformations in the atomic weight without gamma production above the background are brought about during Deformed Space–Time reactions. We present the results of the analyses performed on samples taken from the transformation product. The analyses have been done in two groups, the first one using five different analytical techniques: ICP-OES, XRF, ESEM-EDS, ICP-MS, INAA. In the second group of analyses, we used only two techniques: INAA and ICP-MS. The second group of analyses confirmed the occurring of the transformations in mercury.


2007 ◽  
Vol 22 (32) ◽  
pp. 6243-6251 ◽  
Author(s):  
HRVOJE NIKOLIĆ

The conserved probability densities (attributed to the conserved currents derived from relativistic wave equations) should be nonnegative and the integral of them over an entire hypersurface should be equal to one. To satisfy these requirements in a covariant manner, the foliation of space–time must be such that each integral curve of the current crosses each hypersurface of the foliation once and only once. In some cases, it is necessary to use hypersurfaces that are not spacelike everywhere. The generalization to the many-particle case is also possible.


Author(s):  
Yahya Younesizadeh ◽  
Fayzollah Younesizadeh

In this work, we study the differential scattering cross-section (DSCS) in the first-order Born approximation. It is not difficult to show that the DSCS can be simplified in terms of the system response function. Also, the system response function has this property to be written in terms of the spectral function and the momentum distribution function in the impulse approximation (IA) scheme. Therefore, the DSCS in the IA scheme can be formulated in terms of the spectral function and the momentum distribution function. On the other hand, the DSCS for an electron off the [Formula: see text] and [Formula: see text] nuclei is calculated in the harmonic oscillator shell model. The obtained results are compared with the experimental data, too. The most important result derived from this study is that the calculated DSCS in terms of the spectral function has a high agreement with the experimental data at the low-energy transfer, while the obtained DSCS in terms of the momentum distribution function does not. Therefore, we conclude that the response of a many-fermion system to a probe particle in IA must be written in terms of the spectral function for getting accurate theoretical results in the field of collision. This is another important result of our study.


2018 ◽  
Vol 64 (1) ◽  
pp. 18
Author(s):  
G. Gómez ◽  
I. Kotsireas ◽  
I. Gkigkitzis ◽  
I. Haranas ◽  
M.J. Fullana

Weintend to use the description oftheelectron orbital trajectory in the de Broglie-Bohm (dBB) theory to assimilate to a geodesiccorresponding to the General Relativity (GR) and get from itphysicalconclusions. ThedBBapproachindicatesustheexistenceof a non-local quantumfield (correspondingwiththequantumpotential), anelectromagneticfield and a comparativelyveryweakgravitatoryfield, togetherwith a translationkineticenergyofelectron. Ifweadmitthatthosefields and kineticenergy can deformthespace time, according to Einstein'sfield equations (and to avoidtheviolationoftheequivalenceprinciple as well), we can madethehypothesisthatthegeodesicsof this space-time deformation coincide withtheorbitsbelonging to thedBBapproach (hypothesisthat is coherentwiththestabilityofmatter). Fromit, we deduce a general equation that relates thecomponentsofthemetric tensor. Thenwe find anappropriatemetric for it, bymodificationofanexactsolutionofEinstein'sfield equations, whichcorresponds to dust in cylindricalsymmetry. Thefoundmodelproofs to be in agreementwiththebasicphysicalfeaturesofthehydrogenquantum system, particularlywiththeindependenceoftheelectronkineticmomentum in relationwiththeorbit radius. Moreover, themodel can be done Minkowski-like for a macroscopicshortdistancewith a convenientelectionof a constant. According to this approach, theguiding function ofthewaveontheparticlecould be identifiedwiththedeformationsofthespace-time and thestabilityofmatterwould be easilyjustifiedbythe null accelerationcorresponding to a geodesicorbit.


Author(s):  
Alireza Jamali

It is known since Madelung that the Schrödinger equation can be thought of as governing the evolution of an incompressible fluid, but the current theory fails to mathematically express this incompressibility in terms of the wavefunction without facing problem. In this paper after showing that the current definition of quantum-mechanical momentum as a linear operator is neither the most general nor a necessary result of the de Broglie hypothesis, a new definition is proposed that can yield both a meaningful mathematical condition for the incompressibility of the Madelung fluid, and nonlinear generalisations of Schrödinger and Klein-Gordon equations. The derived equations satisfy all conditions that are expected from a proper generalisation: simplification to their linear counterparts by a well-defined dynamical condition; Galilean and Lorentz invariance (respectively); and signifying only rays in the Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document