scholarly journals On fractional Liénard--type systems

2019 ◽  
Vol 65 (6 Nov-Dec) ◽  
pp. 618 ◽  
Author(s):  
A. Fleitas ◽  
J. A. Mendez-Bermudez ◽  
J. E. Napoles Valdes ◽  
J. M. Sigarreta Almira

In this work we present numerical results of classical Li\'{e}nard--type systems in a very general context, since we consider several types of derivatives (integer order and fractional order, global and local). Additionally we made theoretical-methodological observations. En este trabajo presentamos resultados num´ericos de sistemas tipo Li´enard en un contexto muy general ya que consideramos varios tipos dederivadas (de orden entero y fraccionario, globales y locales). Adicionalmente hacemos observaciones te ´oricas y metodol´ogicas.

Entropy ◽  
2018 ◽  
Vol 20 (7) ◽  
pp. 530 ◽  
Author(s):  
Amina-Aicha Khennaoui ◽  
Adel Ouannas ◽  
Samir Bendoukha ◽  
Xiong Wang ◽  
Viet-Thanh Pham

In this paper, we propose a fractional map based on the integer-order unified map. The chaotic behavior of the proposed map is analyzed by means of bifurcations plots, and experimental bounds are placed on the parameters and fractional order. Different control laws are proposed to force the states to zero asymptotically and to achieve the complete synchronization of a pair of fractional unified maps with identical or nonidentical parameters. Numerical results are used throughout the paper to illustrate the findings.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 213
Author(s):  
Marius-F. Danca ◽  
Nikolay Kuznetsov

In this paper, the D3 dihedral logistic map of fractional order is introduced. The map presents a dihedral symmetry D3. It is numerically shown that the construction and interpretation of the bifurcation diagram versus the fractional order requires special attention. The system stability is determined and the problem of hidden attractors is analyzed. Furthermore, analytical and numerical results show that the chaotic attractor of integer order, with D3 symmetries, looses its symmetry in the fractional-order variant.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1544
Author(s):  
Chunpeng Wang ◽  
Hongling Gao ◽  
Meihong Yang ◽  
Jian Li ◽  
Bin Ma ◽  
...  

Continuous orthogonal moments, for which continuous functions are used as kernel functions, are invariant to rotation and scaling, and they have been greatly developed over the recent years. Among continuous orthogonal moments, polar harmonic Fourier moments (PHFMs) have superior performance and strong image description ability. In order to improve the performance of PHFMs in noise resistance and image reconstruction, PHFMs, which can only take integer numbers, are extended to fractional-order polar harmonic Fourier moments (FrPHFMs) in this paper. Firstly, the radial polynomials of integer-order PHFMs are modified to obtain fractional-order radial polynomials, and FrPHFMs are constructed based on the fractional-order radial polynomials; subsequently, the strong reconstruction ability, orthogonality, and geometric invariance of the proposed FrPHFMs are proven; and, finally, the performance of the proposed FrPHFMs is compared with that of integer-order PHFMs, fractional-order radial harmonic Fourier moments (FrRHFMs), fractional-order polar harmonic transforms (FrPHTs), and fractional-order Zernike moments (FrZMs). The experimental results show that the FrPHFMs constructed in this paper are superior to integer-order PHFMs and other fractional-order continuous orthogonal moments in terms of performance in image reconstruction and object recognition, as well as that the proposed FrPHFMs have strong image description ability and good stability.


Author(s):  
Akbar Zada ◽  
Sartaj Ali ◽  
Tongxing Li

AbstractIn this paper, we study an implicit sequential fractional order differential equation with non-instantaneous impulses and multi-point boundary conditions. The article comprehensively elaborate four different types of Ulam’s stability in the lights of generalized Diaz Margolis’s fixed point theorem. Moreover, some sufficient conditions are constructed to observe the existence and uniqueness of solutions for the proposed model. The proposed model contains both the integer order and fractional order derivatives. Thus, the exponential function appearers in the solution of the proposed model which will lead researchers to study fractional differential equations with well known methods of integer order differential equations. In the last, few examples are provided to show the applicability of our main results.


2009 ◽  
Author(s):  
Bijoy K. Mukherjee ◽  
Santanu Metia ◽  
Sio-Iong Ao ◽  
Alan Hoi-Shou Chan ◽  
Hideki Katagiri ◽  
...  

2016 ◽  
Vol 40 (1) ◽  
pp. 331-340 ◽  
Author(s):  
Samia Talmoudi ◽  
Moufida Lahmari

Currently, fractional-order systems are attracting the attention of many researchers because they present a better representation of many physical systems in several areas, compared with integer-order models. This article contains two main contributions. In the first one, we suggest a new approach to fractional-order systems modelling. This model is represented by an explicit transfer function based on the multi-model approach. In the second contribution, a new method of computation of the validity of library models, according to the frequency [Formula: see text], is exposed. Finally, a global model is obtained by fusion of library models weighted by their respective validities. Illustrative examples are presented to show the advantages and the quality of the proposed strategy.


2021 ◽  
Author(s):  
Adedayo Oke Adelakun

Abstract OPCL Coupling of Integer-order and fractional-order Sprott-A systems using off-shelf components are constructed. Fractance configurations such as chain-type and tree-type were designed using a fractional-order capacitor and fractional-order resistor, respectively. The simulation results of the coupled circuits reveal the transition between complete synchronization (CS) to Anti-synchronization (AS) and vice versa via Amplitude death (AD).


Author(s):  
Eugenia Stanisauskis ◽  
Paul Miles ◽  
William Oates

Auxetic foams exhibit novel mechanical properties due to their unique microstructure for improved energy-absorption and cavity expansion applications that have fascinated the scientific community since their inception. Given the advancements in material processing and performance of polymer open cell auxetic foams, there is a strong desire to fully understand the nonlinear rate-dependent deformation of these materials. The influence of nonlinear compressibility is introduced here along with relaxation effects to improve model predictions for different stretch rates and finite deformation regimes. The viscoelastic behavior of the material is analyzed by comparing fractional order and integer order calculus models. All results are statistically validated using maximum entropy methods to obtain Bayesian posterior densities for the hyperelastic, auxetic, and viscoelastic parameters. It is shown that fractional order viscoelasticity provides [Formula: see text]–[Formula: see text] improvement in prediction over integer order viscoelastic models when the model is calibrated at higher stretch rates where viscoelasticity is more significant.


Sign in / Sign up

Export Citation Format

Share Document