scholarly journals Prediction of electronic and optical properties for Zn1-xCdxSeyTe1-y quaternary alloys: First-principles study

2021 ◽  
Vol 67 (4 Jul-Aug) ◽  
pp. 041001
Author(s):  
K. Benchikh ◽  
M. Benchehima ◽  
H. A. Bid ◽  
A. Chabane Chaouche

In the present work, the density functional theory (DFT) was performed for the investigation of the structural, electronic and optical properties of the Zn1-xCdxSeyTe1-y quaternary alloys using the full potential linearized augmented plane wave (FP-LAPW) method. For the calculations of the structural properties we have used the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBEsol). On other hand, the electronic properties have been computed within the local density approximation (LDA) in adding to the Tran-Blaha modified Becker-Johnson (TB-mBJ) approach. Our results indicate that the lattice constant, as well as the bulk modulus and the energy gap for the Zn1-xCdxSeyTe1-y quaternary show almost linear variations on the concentration x (0.125≤x≤0.875). In addition, the simulated band structures for theZn1-xCdxSeyTe1-y quaternary exhibits a direct-gap for all concentrations. Moreover, low bowing parameters are observed. Also, some interesting optical properties such as dielectric constant, refractive index, extinction coefficient, absorption coefficient and reflectivity have been calculated by using the TB-mBJ method.  The results of our computations shows that theZn1-xCdxSeyTe1-y quaternary alloy is a promissing candidate for optoelectronic applications. It is noteworthy that the present work is the first theoretical study of the quaternary of interest using the FP-LAPW calculations.

2015 ◽  
Vol 29 (05) ◽  
pp. 1550028 ◽  
Author(s):  
R. Graine ◽  
R. Chemam ◽  
F. Z. Gasmi ◽  
R. Nouri ◽  
H. Meradji ◽  
...  

We carried out ab initio calculations of structural, electronic and optical properties of Indium nitride ( InN ) compound in both zinc blende and wurtzite phases, using the full-potential linearized augmented plane wave method (FP-LAPW), within the framework of density functional theory (DFT). For the exchange and correlation potential, local density approximation (LDA) and generalized gradient approximation (GGA) were used. Moreover, the alternative form of GGA proposed by Engel and Vosko (EV-GGA) and modified Becke–Johnson schemes (mBJ) were also applied for band structure calculations. Ground state properties such as lattice parameter, bulk modulus and its pressure derivative are calculated. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show good agreement with the available data. The calculated band structure shows a direct band gap Γ → Γ. In the optical properties section, several optical quantities are investigated; in particular we have deduced the interband transitions from the imaginary part of the dielectric function.


2016 ◽  
Vol 257 ◽  
pp. 123-126 ◽  
Author(s):  
Salima Labidi ◽  
Jazia Zeroual ◽  
Malika Labidi ◽  
Kalthoum Klaa ◽  
Rachid Bensalem

First-principles calculations for electronic and optical properties under pressure effect of MgO, SrO and CaO compounds in the cubic structure, using a full relativistic version of the full-potential augmented plane-wave (FP-LAPW) method based on density functional theory, within the local density approximation (LDA) and the generalized gradient approximation (GGA), have been reported. Furthermore, band structure calculations have been investigated by the alternative form of GGA proposed by Engel and Vosko (GGA-EV) and modified by Becke-Johnson exchange correlation potential (MBJ-GGA). All calculated equilibrium lattices, bulk modulus and band gap at zero pressure are find in good agreement with the available reported data. The pressure dependence of band gap and the static optical dielectric constant are also investigated in this work.


2016 ◽  
Vol 30 (14) ◽  
pp. 1650159 ◽  
Author(s):  
M. Narimani ◽  
Z. Nourbakhsh

In this paper, the structural, electronic and optical properties of LuPdBi and ScPdBi compounds are investigated using the density functional theory by WIEN2K package within the generalized gradient approximation, local density approximation, Engel–Vosco generalized gradient approximations and modified Becke–Johnson potential approaches. The topological phases and band orders of these compounds are studied. The effect of pressure on band inversion strength, electron density of states and the linear coefficient of the electronic specific heat of these compounds is investigated. Furthermore, the effect of pressure on real and imaginary parts of dielectric function, absorption and reflectivity coefficients of these compounds is studied.


2009 ◽  
Vol 23 (26) ◽  
pp. 3065-3079 ◽  
Author(s):  
S. DRABLIA ◽  
H. MERADJI ◽  
S. GHEMID ◽  
N. BOUKHRIS ◽  
B. BOUHAFS ◽  
...  

We have performed first-principle full-potential (linear) augmented plane wave plus local orbital calculations (FP-L/APW + l0) with density functional theory (DFT) in local density approximation (LDA) and generalized gradient approximation (GGA), with the aim to determine and predict the electronic and optical properties of rocksalt BaO , BaS , BaSe , BaTe and BaPo compounds. First we present the main features of the electronic properties of these compounds, where the electronic band structure shows that the fundamental energy gap is indirect (Γ–X) for all compounds except for BaO which is direct (X–X). The different interband transitions have been determined from the imaginary part of the dielectric function. The real and imaginary parts of the dielectric function and the reflectivity are calculated. We have presented the assignment of the different optical transitions existing in these compounds from the imaginary part of the dielectric function spectra with respect to their correspondence in the electronic band. We have also calculated the pressure and volume dependence of the optical properties for these compounds.


2012 ◽  
Vol 26 (32) ◽  
pp. 1250199 ◽  
Author(s):  
M. HARMEL ◽  
H. KHACHAI ◽  
M. AMERI ◽  
R. KHENATA ◽  
N. BAKI ◽  
...  

Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3( A = Cs ; M = Ca and Sr ) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.


2016 ◽  
Vol 78 (3-2) ◽  
Author(s):  
A. M. A. Bakheet ◽  
M. A. Saeed ◽  
A. R. M. Isa ◽  
R. Sahnoun

Beta-tri-calcium phosphate (β-TCP) materials have gained a great deal of research considerations in biomaterial area due to their excellent biocompatibility and identical chemical compositions to the natural teeth and bones. Therefore, the β-TCP compound can be used as coatings, cement and composites as well as biocompatible ceramics for medical and dental applications. Electronic and optical properties for β-TCP compound have been investigated using density functional theory (DFT). For the calculations, we used full potential linear augmented plane wave method (FPLAPW), within three types of approximations along with local density approximations (LDA), generalized gradient approximations (GGA) and Modified Becke-Johnson (mBJ) to get the effect of the exchange and correlation in our calculations to get an accurate results. The computed band gap values for (β-TCP) compound using LDA, GGA, and mBJ-GGA approximations are 5.5 eV, 5.9 eV and 6.8 eV respectively. This is also predicted that the chemical bonding in this compound is a kind of combination of covalent and ionic character that is in a line with the experimental findings. The optical parameter, static dielectric constant ε1(0) reaches the values of 3.23681 (eV) at 0 GPa for the β-TCP compound. The obtained results are of vital nature for rising the quality of the electronic and optical properties of this material, and provide more evidence to fabricate novel Beta-Tri-calcium phosphate biomaterials for medical and dental applications.


2016 ◽  
Vol 30 (11) ◽  
pp. 1650173 ◽  
Author(s):  
S. Al-Rajoub ◽  
B. Hamad

The structural, electronic and optical properties of mercury cadmium sulfide (Hg[Formula: see text]Cd[Formula: see text]S) alloys with [Formula: see text] = 0.0, 0.25, 0.5, 0.75 are studied using density functional theory (DFT) within full-potential linearized augmented plane wave (FPLAPW) method. We used the local density approximation (LDA), the generalized gradient approximation (GGA), Hubbard-corrected functionals (GGA/LDA[Formula: see text]+[Formula: see text][Formula: see text]) and the modified Becke–Johnson (LDA/GGA)-mjb hybrid potentials to treat the exchange-correlation functional [Formula: see text]. We found that LDA functional predicts better lattice constants than GGA functional. Mercury sulfide (HgS) binary alloy was found to exhibit a semi-metallic behavior using all functional with an inverted band gap close to the experimental value. However, the hybrid functionals were more successful than LDA and GGA functionals to predict the correct electronic structure of Hg[Formula: see text]Cd[Formula: see text]S ternary alloys. The results of the electronic and optical band gaps are consistent for Hg[Formula: see text]Cd[Formula: see text]S ternary alloys.


2020 ◽  
Vol 38 (2) ◽  
pp. 320-327
Author(s):  
M. Caid ◽  
D. Rached

AbstractThe structural, electronic and optical properties of (AlSb)m/(GaSb)n (m-n: 1-1, 2-2, 1-3 and 3-1) superlattices are investigated within the density functional theory (DFT) by using the last version of the first principles full potential linear muffin tin orbital method (FP-LMTO) as implemented in LmtART 7.0 code. The exchange and correlation potential is treated by the local density approximation (LDA) for the total energy calculations. Our calculations of the band structure show that the superlattices (n ≠ 1) have a direct band gap Γ-Γ. The optical constants, including the dielectric function ϵ(w), the refractive index n(w) and the reflectivity R(w) are calculated and discussed.


2014 ◽  
Vol 28 (31) ◽  
pp. 1450221 ◽  
Author(s):  
M. Dadsetani ◽  
A. Zeinivand

Optical properties of Zn 1-x Mg x S , Zn 1-x Mg x Se and Zn 1-x Mg x Te (0 ≤ x ≤ 1) ternary semiconductor alloys are calculated using the full potential linearized augmented plane wave within the density functional theory. The exchange correlation potential is treated by the generalized gradient approximation (GGA) within Perdew et al. scheme. The real and imaginary parts of the dielectric function ε(ω), the refractive index n(ω), the extinction coefficient k(ω), the optical absorption coefficient α(ω), the reflectivity R(ω) and the electron energy loss function (EELS) are calculated within random phase approximation (RPA). Our results are compared with the previous theoretical calculations and available experimental data. Moreover, the interband transitions responsible for the structures seen in the spectra are specified. It is shown that, the chalcogen p states as initial and Zn 4s, Mg 3s, chalcogen d states as final states perform the major role in optical transitions.


2020 ◽  
Author(s):  
Messaoud Caid

An investigation into the structural, electronic and optical properties of superlattices(SLs) (ZnSe)n/(ZnTe)n was conducted using first principles calculations based on density functional theory (DFT). The total energies were calculated within the full-potential linear muffin-tin orbital (FP-LMTO) method augmented by a plane-wave basis (PLW), implemented in LmtART 7.0 code. The effects of the approximations to the exchange-correlation energy were treated by the local density approximation (LDA). The ground state properties of (ZnSe)n/(ZnTe)n binary compounds are determined and compared with the available data. It is found that the superlattice (n-n: 1-1, 2-2 and 3-3) band gaps vary depending on the layers used. The optical constants, including the dielectric function ε(w), the refractive index n(w) and the reflectivity R(w), are calculated for radiation energies up to 35eV.


Sign in / Sign up

Export Citation Format

Share Document