Evaluation of spent fuel transport cask from the radiological point of view

Kerntechnik ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. 131-134
Author(s):  
A. Abdelhady
Keyword(s):  
Author(s):  
Zhixin Xu ◽  
Ming Wang ◽  
Binyan Song ◽  
WenYu Hou ◽  
Chao Wang

The Fukushima nuclear disaster has raised the importance on the reliability and risk research of the spent fuel pool (SFP), including the risk of internal events, fire, external hazards and so on. From a safety point of view, the low decay heat of the spent fuel assemblies and large water inventory in the SFP has made the accident progress goes very slow, but a large number of fuel assemblies are stored inside the spent fuel pool and without containment above the SFP building, it still has an unignored risk to the safety of the nuclear power plant. In this paper, a standardized approach for performing a holistic and comprehensive evaluation approach of the SFP risk based on the probabilistic safety analysis (PSA) method has been developed, including the Level 1 SFP PSA and Level 2 SFP PSA and external hazard PSA. The research scope of SFP PSA covers internal events, internal flooding, internal fires, external hazards and new risk source-fuel route risk is also included. The research will provide the risk insight of Spent Fuel Pool operation, and can help to make recommendation for the prevention and mitigation of SFP accidents which will be applicable for the SFP configuration risk management.


Disposal of vitrified high-activity waste in properly selected deep geological formations is the option that absorbs most of present R&D and appears as an acceptable solution from a technical point of view. As regards safety, disposal projects under development appear to satisfy present radiological protection criteria, even if much uncertainty exists in both models and input data. Other disposal concepts are, however, also being studied, with more limited effort. Their quantification in terms of costs and benefits is therefore rather uncertain at present. Among them the following are treated briefly: disposal in deep oceanic sediments, actinide separation and recycling, and extraterrestrial disposal. Taking into account the cost and development time required to bring these options to industrial operation, they should not be considered as alternatives to present projects of waste disposal, but rather as scientific research that may lead to industrial realization in a more mature nuclear age, in which the balance of costs, risks and benefits will be different. Long-term storage of either spent fuel or vitrified waste, although not an alternative strategy of disposal, is an option that has considerable effects on waste management and the fuel cycle in general. The three scenarios (disposal of vitrified waste in geological formations, extended storage, advanced disposal options) complement each other very well and none of them should be pursued at the sacrifice of the others.


2006 ◽  
Vol 932 ◽  
Author(s):  
M. De Craen

ABSTRACTIn Belgium, the Boom Clay is studied as the reference formation for geological disposal of high-level radioactive waste and spent fuel. As the Boom Clay is considered as the main barrier for radionuclide migration/retention, a thorough characterisation of the clay and its pore water was done. This facilitates better understanding of the long-term geological processes and the distribution of the trace elements and radionuclides.From a mineralogical/geochemical point of view, the Boom Clay is considered as a rather homogeneous sediment, vertically as well as laterally. It is composed of detrital minerals, organic matter and fossils. Minerals are mainly clay minerals, quartz and feldspars. Minor amounts of pyrite and carbonates are also present. Small variations in mineralogical/geochemical composition are related to granulometrical variations. The radiochemical study indicates that the Boom Clay is in a state of secular radioactive equilibrium, meaning that the Boom Clay has not been disturbed for a very long time.Pore water sampling is done in situ from various piezometers, or by the squeezing or leaching of clay cores in the laboratory. These three pore water sampling techniques have been compared and evaluated. Boom Clay pore water is a NaHCO3 solution of 15 mM, containing 115 mg·1−1 of dissolved natural organic carbon. Some slight variations in pore water composition have been observed and can be explained by principles of chemical equilibrium.


Author(s):  
Nineta Balas (Ghizdeanu) ◽  
Petre Ghitescu

PHWRs use natural uranium as fuel and consequently the burn-up coefficient is relatively small compared to PWRs or other existing power reactors. The small burn-up coefficient results in a high volume of irradiated fuel to be disposed, with a high concentration of plutonium and minor actinides. In Romania the irradiated fuel from the existing CANDU 6 spent fuel pool is currently transferred in the Dry Intermediate Fuel Storage Facility existing at the NPP site. Partitioning and Transmutation (P&T) techniques could contribute to reduce the radioactive inventory and its associated radio-toxicity. The use for this purpose of ADS and FBR was more studied, but HWR were not. Therefore, the paper presents different theoretical possibilities to transmute/burn the Plutonium and minor actinides in two different PHWRs — CANDU and ACR, using WIMSD code. Different types of MOX alternative fuel, with variable initial Pu content are analyzed. The results present the reactivity effects along with the isotopes concentration in spent alternative fuel and determine the optimal solution for the fuel type/composition. Thus is indicated the most suitable PHWR type of reactor for possible Plutonium and minor actinides transmutation. The simulations showed that Pu content for an irradiation period of 200 days decreases from the initial value up to 11% in a CANDU reactor and 29% in an ACR. Thus ACR can reduce the plutonium inventory from MOX fuel and could be a transmutation solution. From the economic/technical point of view this analysis also provides input for a study yet to be conducted.


1999 ◽  
Vol 556 ◽  
Author(s):  
S. G. Johnson ◽  
D. D. Keiser ◽  
M. Noy ◽  
T. O'Holleran ◽  
S. M. Frank

AbstractArgonne National Laboratory is developing an electrometallurgical treatment for spent fuel from the experimental breeder reactor II. A product of this treatment process is a metal waste form that incorporates the stainless steel cladding hulls, zirconium from the fuel and the fission products that are noble to the process, i.e., Tc, Ru, Pd, Rh, Ag. The nominal composition of this waste form is stainless steel/15 wt% zirconium/ 1–4 wt% noble metal fission products. The behavior of technetium is of particular importance from a disposal point of view for this waste form due to its long half life, 2.14E5 years, and its mobility in groundwater. To address these concerns a limited number of spiked metal waste forms were produced containing Tc. These surrogate waste forms were then studied using scanning electron microscopy (SEM) and selected leaching tests.


Author(s):  
Yvon Vanderborck ◽  
Jacques Basselier

Abstract Long term storage of plutonium separated from fission products is not a good solution according to the current non-proliferation criteria as well as from an economic point of view. This material has thus to be converted to the equivalent of the “spent fuel standard”. Only one technique has so far reached the industrial maturity necessary to convert the important existing plutonium stockpiles: it is the use of plutonium to manufacture and irradiate MOX fuel. The paper reviews the existing information over the separated plutonium stockpiles and the various International Agreements, which are implemented to cover the peaceful use of plutonium. The dual track solution retained in U.S. in mentioned. The situation U.S. and Russia is updated, the roles of Europe and Belgium are presented. The activities of BELGONUCLEAIRE on the US and Russian sides will be described and its experience in fabrication technology, quality, safety, environmental issues, non-proliferation, safeguards and transport will be considered. The transfer of technology to France, Japan and US makes the MIMAS BELGONUCLEAIRE fabrication process equivalent to an international standard. This forms a sound basis for further development and for a transfer to Russia. The paper will demonstrate by this way the commitment of BELGONUCLEAIRE to participate to the peaceful uses of plutonium, as well as its contribution safely to non-proliferation and disarmament international policy.


Author(s):  
Javier Quin˜ones ◽  
Joaquin Cobos Sabate ◽  
Eduardo Iglesias ◽  
Nieves Rodriguez ◽  
Aurora Marti´nez-Esparza

From the Spanish point of view, one of the key issues related to the HLW performance assessment is knowing and predicting, or modelling, the behaviour of spent fuel under geological repository conditions. Taking into account this objective, several experiments have been performed in order to split and determine the influence of different variables on the final stability of the spent fuel matrix in the geological repository. This paper presents some of the leaching results obtained with spent fuel and chemical analogues (UO2, alpha doped – UO2, SIMFUEL,) their application to extrapolate the corrosion behaviour for a long period of time and compare with corresponding data obtained using models. This procedure allows pointing out some of the uncertainties whose minimization is necessary to improve the models useful for performance assessment studies.


1994 ◽  
Vol 353 ◽  
Author(s):  
P. Díaz-Arocas ◽  
J. Quinoñes ◽  
C. Maffiotte ◽  
J. Serrano ◽  
J. Garcia ◽  
...  

AbstractThe leaching of the spent fuel matrix (UO2) is function of the radiolytic products formation. The effect of each radioiytic product on the leaching process is not totally understood. In the literature, the influence of H2O2 on the dissolution process is described from the qualitative point of view, and most of the studies were performed for pH values from 8 to 12. In this paper we report on the effect of the H2O2 in the leaching process of UO2 by dissolution experiments at various H2O2 concentrations. Also, it was tested the influence of S/V ratio (surface area exposed to the leaching media) on the UO2 leaching and secondary phases formation. It was identified the formation of secondary phases on the UO2 surface. Solid phases characterization was carried out by x-ray Photoelectron Spectrometry (XPS), x-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. By XPS studies the secondary phase formed corresponded to a U(VI) phase. By XRD analyses the solid was identified as studtite, UO4 - 4H2O, (card n0 16–206, [I]). A comparison of the U(VI) phases formed in spent fuel and UO, leaching experiments in various media has been carried out.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1984 ◽  
Vol 75 ◽  
pp. 331-337
Author(s):  
Richard Greenberg

ABSTRACTThe mechanism by which a shepherd satellite exerts a confining torque on a ring is considered from the point of view of a single ring particle. It is still not clear how one might most meaningfully include damping effects and other collisional processes into this type of approach to the problem.


Sign in / Sign up

Export Citation Format

Share Document