Backside Hot Spot Detection

Author(s):  
Félix Beaudoin ◽  
Philippe Perdu ◽  
Romain Desplats ◽  
Lionel Dantas de Morais ◽  
Olivier Crepel ◽  
...  

Abstract Defects localization from the IC’s backside using hot spot detection techniques is discussed. Simulations are used to validate the applicability of hot spot detection from the silicon backside and to determine the optimal experimental conditions. The effects of the dissipated power, the substrate thickness and the defect position relative to the chip area are studied. These simulations take into account the thermal dependence of the silicon thermal conductivity. Transient simulations are also performed to evaluate the effect of modulating the power on the backside temperature difference. Backside Liquid Crystal Microscopy as well as Infrared Thermography and Thermal Laser Stimulation results on defective ICs are presented.

1999 ◽  
Vol 29 ◽  
pp. 151-154 ◽  
Author(s):  
Crescenzo Festa ◽  
Aristide Rossi

AbstractAn apparatus is described for measuring the thermal conductivity of ice by the transient hot-wire method. Thermal conductivity A, is determined by tracking the thermal pulse induced in the sample by a heating source consisting of a platinum resistor. A central segment of the same platinum heating resistor acts also as a thermal sensor. A heat pulse transferred to the ice for a period of 40s gives a maximum temperature increment of about 7-14°C. In good experimental conditions, the expected reproducibility of the measurements is within ±3%. The accuracy of the method depends on whether the instrument has been calibrated by reliable standard samples, certified by absolute methods.


Author(s):  
Rami F. Salem ◽  
Ahmed Arafa ◽  
Sherif Hany ◽  
Abdelrahman ElMously ◽  
Haitham Eissa ◽  
...  

2011 ◽  
Author(s):  
Hongbo Zhang ◽  
Yuelin Du ◽  
Martin D. F. Wong ◽  
Rasit O. Topaloglu

2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Li Wei ◽  
Feng Yanhui ◽  
Peng Jia ◽  
Zhang Xinxin

The thermal conductivity of carbon nanotubes with Stone-Wales (SW) defects was investigated using non-equilibrium molecular dynamics method. The defect effects were analyzed by the temperature profile and local thermal resistance of the nanotubes with one or more SW defects and further compared with perfect tubes. The influences of the defect concentration, the length, the chirality and the radius of tubes and the ambient temperature were studied. It was demonstrated that a sharp jump in the temperature profile occurred at defect position due to a higher local thermal resistance, thus dramatically reducing the thermal conductivity of the nanotube. As the number of SW defects increases, the thermal conductivity decreases. Relative to the chirality, the radius has greater effects on the thermal conductivity of tubes with SW defects. With the similar radius, the thermal conductivity of armchair nanotube is higher than that of zigzag one. The shorter nanotube is more sensitive to the defect than the longer one. Thermal conductivity of the nanotube increases with ambient temperature, reaches a peak, and then decreases with increasing temperature.


2019 ◽  
Vol 11 (6) ◽  
pp. 669 ◽  
Author(s):  
Valerio Lombardo ◽  
Stefano Corradini ◽  
Massimo Musacchio ◽  
Malvina Silvestri ◽  
Jacopo Taddeucci

The high temporal resolution of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument aboard Meteosat Second Generation (MSG) provides the opportunity to investigate eruptive processes and discriminate different styles of volcanic activity. To this goal, a new detection method based on the wavelet transform of SEVIRI infrared data is proposed. A statistical analysis is performed on wavelet smoothed data derived from SEVIRI Mid-Infrared( MIR) radiances collected from 2011 to 2017 on Mt Etna (Italy) volcano. Time-series analysis of the kurtosis of the radiance distribution allows for reliable hot-spot detection and precise timing of the start and end of eruptive events. Combined kurtosis and gradient trends allow for discrimination of the different activity styles of the volcano, from effusive lava flow, through Strombolian explosions, to paroxysmal fountaining. The same data also allow for the prediction, at the onset of an eruption, of what will be its dominant eruptive style at later stages. The results obtained have been validated against ground-based and literature data.


2014 ◽  
Author(s):  
Jesper Molin ◽  
Kavitha Shaga Devan ◽  
Karin Wårdell ◽  
Claes Lundström
Keyword(s):  
Hot Spot ◽  
Ki 67 ◽  

Sign in / Sign up

Export Citation Format

Share Document