The Changing Role of Advanced Sample Preparation in X-Ray Inspection Supporting 2.5D and 3D Sample Failure Analysis

Author(s):  
Rosanne M. LaVoy ◽  
Fred Babian ◽  
Matthew Mulholland ◽  
Scott Silverman

Abstract The X-ray inspection of fully assembled samples is becoming ever more important as the benefits of using area array packages/chip scale packages/flip chips are applied to more and more products. Sample preparation has traditionally been used to improve access to geometry or a specific location with a known defect that requires verification. The novel paradigm is an integrated approach to sample preparation and X-ray inspection to optimize resolution and throughput time performance with minimally deprocessed sample. This paper, covering the limitations of X-Ray imaging and 3D tomographic reconstruction, discusses the development of models for throughput time and resolution by failure analysis labs. It also discusses the processes involved in advanced sample preparation techniques and global BGA removal to obtain improved resolution at die level.

Author(s):  
Rosanne M. LaVoy ◽  
Fred Babian ◽  
Andrew Reid

Abstract The need for reverse engineering (for IP verification or for reproducibility) has reached unprecedented levels requiring not only the inspection of the circuitry but also the understanding of the packaging and interconnects. Achieving the best X-ray inspection for a particular application depends on an in-depth understanding of the X-ray system configuration, the sample configuration, and the sample preparation techniques available. This paper presents various case examples on the development of advanced X-ray inspection techniques for IC reverse engineering, along with information on the limitations of X-ray imaging, issues with 3D reconstruction, models for resolution configuration improvement, and advantages and disadvantages of advanced sample preparation techniques. It is observed that the novel X-ray inspection techniques, combined with appropriate sample prep techniques, provide the necessary resolution to achieve results necessary for current reverse engineering needs.


Author(s):  
Rosanne M. LaVoy ◽  
Fred Babian ◽  
Andrew Reid

Abstract It is known by both the commercial and government suppliers, one of the best ways to guarantee the security and reliability of IC's is to image the IC directly using an x-ray microscope. These images can be inspected for many signs of counterfeit electronics. Unfortunately, previous generations of x-ray imaging systems have not kept up with the increasingly sophisticated counterfeiting techniques. Traditional 2D X-ray inspection techniques are becoming inadequate for imaging and verifying features due to the limited resolution of these systems for thick samples and because 2D images contain too many overlapping features to easily discern, making identification very difficult. This paper discusses the development of advanced sample preparation techniques for counterfeit IC detection. It presents information on the limitations of X-ray imaging and 3D tomographic reconstruction, and on the models for resolution configuration improvement.


MRS Bulletin ◽  
1988 ◽  
Vol 13 (1) ◽  
pp. 13-18 ◽  
Author(s):  
J.H. Kinney ◽  
Q.C. Johnson ◽  
U. Bonse ◽  
M.C. Nichols ◽  
R.A. Saroyan ◽  
...  

Imaging is the cornerstone of materials characterization. Until the middle of the present century, visible light imaging provided much of the information about materials. Though visible light imaging still plays an extremely important role in characterization, relatively low spatial resolution and lack of chemical sensitivity and specificity limit its usefulness.The discovery of x-rays and electrons led to a major advance in imaging technology. X-ray diffraction and electron microscopy allowed us to characterize the atomic structure of materials. Many materials vital to our high technology economy and defense owe their existence to the understanding of materials structure brought about with these high-resolution methods.Electron microscopy is an essential tool for materials characterization. Unfortunately, electron imaging is always destructive due to the sample preparation that must be done prior to imaging. Furthermore, electron microscopy only provides information about the surface of a sample. Three dimensional information, of great interest in characterizing many new materials, can be obtained only by time consuming sectioning of an object.The development of intense synchrotron light sources in addition to the improvements in solid state imaging technology is revolutionizing materials characterization. High resolution x-ray imaging is a potentially valuable tool for materials characterization. The large depth of x-ray penetration, as well as the sensitivity of absorption crosssections to atomic chemistry, allows x-ray imaging to characterize the chemistry of internal structures in macroscopic objects with little sample preparation. X-ray imaging complements other imaging modalities, such as electron microscopy, in that it can be performed nondestructively on metals and insulators alike.


1999 ◽  
Vol 27 (2) ◽  
pp. 137 ◽  
Author(s):  
DR Petersen ◽  
RE Link ◽  
RH Bossi
Keyword(s):  
X Ray ◽  

Author(s):  
Akira Mizoguchi ◽  
Minoru Sugawara ◽  
Masahide Nakamura ◽  
Koichiro Takeuchi

Abstract We have been paying attention to the development of the nondestructive physical analysis (NDPA) technology. We think that NDPA is a technology which doesn't depend on the worker's capability or experience. There are many NDPA techniques, and analysis using X-ray imaging is one of the principal techniques. Due to the progress of the image analysis using computers in recent years, X-ray imaging have been evolving from two dimensional images to three dimensional imaging. We have been applying X-ray CT imaging to actual failure analysis and reliability evaluation since 2008. At ISTFA 2009, we reported on the effectiveness of X-ray Computed Tomography (CT) images in the failure analysis. [1] We confirmed that the X-ray CT image had various applications, for example, screening for counterfeit parts, the detection of the defect of the multi-layers printed wiring boards (multi-layers PWB), the structure confirmation of caulking contacts, and the detection of cracks or voids of the solder joint. This paper discusses the effectiveness of X-ray CT imaging in failure analysis and discusses the effectiveness of applying X-ray CT imaging to the propagation of cracks occurring at solder joints during temperature cycling test.


2019 ◽  
Vol 64 (20) ◽  
pp. 205008 ◽  
Author(s):  
Peter Modregger ◽  
Jeff Meganck ◽  
Charlotte K Hagen ◽  
Lorenzo Massimi ◽  
Alessandro Olivo ◽  
...  

2021 ◽  
Vol 2090 (1) ◽  
pp. 012107
Author(s):  
A Konstantinidis ◽  
N Martini ◽  
V Koukou ◽  
G Fountos ◽  
N Kalyvas ◽  
...  

Abstract Characterization of digital X-ray imaging devices is very important because it can be used to measure and compare the performance of detectors used in Diagnostic Radiology. This characterization is usually made through the calculation of Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE). These parameters, especially the DQE, are very important because they quantify the effect of spatial resolution, contrast and noise on Radiographic image quality (IQ). The IEC 62220-1-1:2015 International Standard provides comprehensive guidelines how to capture and analyze X-ray images to characterize digital X-ray detectors. A novel, fast and free MATLAB-based software was developed, named RAD_IQ, to calculate the Signal Transfer Property (STP), perform Noise Component Analysis (NCA), and calculate the parameters MTF, NPS & DQE of X-ray detectors based on the novel IEC 62220-1-1:2015 International Standard for General Radiography and IEC 62220-1-1:2007 for Digital Mammography. Our results were validated against well-established software products used for quantitative image analysis of digital X-ray detectors. The calculated parameters were within 5% difference compared to available software products. The conclusion of our study was that RAD_IQ can be easily used from Medical Physicists, Biomedical Engineers and researchers without any programming experience to characterize the performance of digital X-ray detectors used in Diagnostic Radiology.


Author(s):  
G.R. Hook

Cis-diamminedichloroplatinuum II (CDDP or cisplatin) is a chemotherapeutic drug used to treat cancers of the testicals, ovaries, head, neck and bladder. Although the histological distribution of cisplatin may provide important information on the drug's affect, the cisplatin histological distribution has not been determined because suitable sample preparation and analytical methods have not been developed. We describe here a sample preparation and analytical method to image cisplatin at histological resolution within rat abdominal wall tissue.


2021 ◽  
Author(s):  
Chuan Zhang ◽  
Jane Y. Li ◽  
John Aguada ◽  
Howard Marks

Abstract This paper introduced a novel defect localization approach by performing EBIRCH isolation from backside of flip-chips. Sample preparation and probing consideration was discussed, and then a case study was used to illustrate how the backside EBIRCH technique provides a powerful solution in capturing and root-causing subtle defects in challenging flip-chip failures.


Sign in / Sign up

Export Citation Format

Share Document