X-Ray Imaging Tools for Electronic Device Failure Analysis[1]

Author(s):  
Christian Schmidt
1999 ◽  
Vol 27 (2) ◽  
pp. 137 ◽  
Author(s):  
DR Petersen ◽  
RE Link ◽  
RH Bossi
Keyword(s):  
X Ray ◽  

Author(s):  
Akira Mizoguchi ◽  
Minoru Sugawara ◽  
Masahide Nakamura ◽  
Koichiro Takeuchi

Abstract We have been paying attention to the development of the nondestructive physical analysis (NDPA) technology. We think that NDPA is a technology which doesn't depend on the worker's capability or experience. There are many NDPA techniques, and analysis using X-ray imaging is one of the principal techniques. Due to the progress of the image analysis using computers in recent years, X-ray imaging have been evolving from two dimensional images to three dimensional imaging. We have been applying X-ray CT imaging to actual failure analysis and reliability evaluation since 2008. At ISTFA 2009, we reported on the effectiveness of X-ray Computed Tomography (CT) images in the failure analysis. [1] We confirmed that the X-ray CT image had various applications, for example, screening for counterfeit parts, the detection of the defect of the multi-layers printed wiring boards (multi-layers PWB), the structure confirmation of caulking contacts, and the detection of cracks or voids of the solder joint. This paper discusses the effectiveness of X-ray CT imaging in failure analysis and discusses the effectiveness of applying X-ray CT imaging to the propagation of cracks occurring at solder joints during temperature cycling test.


Author(s):  
Rosanne M. LaVoy ◽  
Fred Babian ◽  
Matthew Mulholland ◽  
Scott Silverman

Abstract The X-ray inspection of fully assembled samples is becoming ever more important as the benefits of using area array packages/chip scale packages/flip chips are applied to more and more products. Sample preparation has traditionally been used to improve access to geometry or a specific location with a known defect that requires verification. The novel paradigm is an integrated approach to sample preparation and X-ray inspection to optimize resolution and throughput time performance with minimally deprocessed sample. This paper, covering the limitations of X-Ray imaging and 3D tomographic reconstruction, discusses the development of models for throughput time and resolution by failure analysis labs. It also discusses the processes involved in advanced sample preparation techniques and global BGA removal to obtain improved resolution at die level.


Author(s):  
John Lindsay ◽  
James Sagar ◽  
James Holland ◽  
Jenny Goulden

Abstract Device failure analysis typically requires multiple systems for fault identification, preparation and analysis. In this paper we discuss the practicalities and limits of using a single FIBSEM system for a complete failure analysis workflow. The theoretical requirements of using a nanomanipulator for both lamella lift out and electrical testing are discussed and the current capabilities of windowless X-rays detectors for chemical analysis demonstrated. When the required resolution for failure analysis exceed the limits of a FIBSEM and TEM is required, the combination of the nanomanipulator and X-ray detector for advanced lift out and thickness controlled thinning techniques are demonstrated to prepare exceptional quality lamellae.


Author(s):  
Joy Y. Liao ◽  
Somayyeh Rahimi ◽  
Christian Schmidt ◽  
Howard Lee Marks

Abstract X-ray imaging for both Failure Analysis and In-line Inspection has been utilized widely in the semiconductor industry, especially for surface mount device applications. During the investigation of total ionizing dose (TID) induced degradation of logic ICs with bulk FinFET technology, we observed that the degradation is mainly in the form of an increase in I/O leakage and IDDQ. Using filters during radiation was shown to impact TID. Failure Analysis was performed to localize the excessive current in both I/O leakage and IDDQ.


Author(s):  
M.G. Baldini ◽  
S. Morinaga ◽  
D. Minasian ◽  
R. Feder ◽  
D. Sayre ◽  
...  

Contact X-ray imaging is presently developing as an important imaging technique in cell biology. Our recent studies on human platelets have demonstrated that the cytoskeleton of these cells contains photondense structures which can preferentially be imaged by soft X-ray imaging. Our present research has dealt with platelet activation, i.e., the complex phenomena which precede platelet appregation and are associated with profound changes in platelet cytoskeleton. Human platelets suspended in plasma were used. Whole cell mounts were fixed and dehydrated, then exposed to a stationary source of soft X-rays as previously described. Developed replicas and respective grids were studied by scanning electron microscopy (SEM).


Author(s):  
James F. Mancuso ◽  
William B. Maxwell ◽  
Russell E. Camp ◽  
Mark H. Ellisman

The imaging requirements for 1000 line CCD camera systems include resolution, sensitivity, and field of view. In electronic camera systems these characteristics are determined primarily by the performance of the electro-optic interface. This component converts the electron image into a light image which is ultimately received by a camera sensor.Light production in the interface occurs when high energy electrons strike a phosphor or scintillator. Resolution is limited by electron scattering and absorption. For a constant resolution, more energy deposition occurs in denser phosphors (Figure 1). In this respect, high density x-ray phosphors such as Gd2O2S are better than ZnS based cathode ray tube phosphors. Scintillating fiber optics can be used instead of a discrete phosphor layer. The resolution of scintillating fiber optics that are used in x-ray imaging exceed 20 1p/mm and can be made very large. An example of a digital TEM image using a scintillating fiber optic plate is shown in Figure 2.


Author(s):  
Ann LeFurgey ◽  
Peter Ingram ◽  
J.J. Blum ◽  
M.C. Carney ◽  
L.A. Hawkey ◽  
...  

Subcellular compartments commonly identified and analyzed by high resolution electron probe x-ray microanalysis (EPXMA) include mitochondria, cytoplasm and endoplasmic or sarcoplasmic reticulum. These organelles and cell regions are of primary importance in regulation of cell ionic homeostasis. Correlative structural-functional studies, based on the static probe method of EPXMA combined with biochemical and electrophysiological techniques, have focused on the role of these organelles, for example, in maintaining cell calcium homeostasis or in control of excitation-contraction coupling. New methods of real time quantitative x-ray imaging permit simultaneous examination of multiple cell compartments, especially those areas for which both membrane transport properties and element content are less well defined, e.g. nuclei including euchromatin and heterochromatin, lysosomes, mucous granules, storage vacuoles, microvilli. Investigations currently in progress have examined the role of Zn-containing polyphosphate vacuoles in the metabolism of Leishmania major, the distribution of Na, K, S and other elements during anoxia in kidney cell nuclel and lysosomes; the content and distribution of S and Ca in mucous granules of cystic fibrosis (CF) nasal epithelia; the uptake of cationic probes by mltochondria in cultured heart ceils; and the junctional sarcoplasmic retlculum (JSR) in frog skeletal muscle.


2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-583-Pr9-588 ◽  
Author(s):  
W. A. Gooch ◽  
M. S. Burkins ◽  
G. Hauver ◽  
P. Netherwood ◽  
R. Benck
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document