scholarly journals Back Side Illumination Image Sensor Characterization by Backside Circuit Editing

Author(s):  
Jian Yu ◽  
Jin Xu ◽  
Niel Sanico

Abstract The characterization of Back Side Illumination (BSI) Image Sensor is challenging because of its unique construct with silicon on top. A novel approach for the BSI Image sensor characterization will be presented in this paper. The proposed approach utilizes the circuit editing through the silicon (backside) by ion beam and optical imaging. This technique allows access to the buried conductors and creates probe points for measurements, which are typically performed by an optical prober, electron beam prober or a mechanical micro/nano prober.

Author(s):  
Jian Yu ◽  
Jin Xu ◽  
Niel Sanico

Abstract The characterization of Back Side Illumination (BSI) Image Sensor is challenging because of its unique construct with silicon on top. A novel approach for the BSI Image sensor characterization will be presented in this paper. The proposed approach utilizes the circuit editing through the silicon (backside) by ion beam and optical imaging. This technique allows access to the buried conductors and creates probe points for measurements, which are typically performed by an optical prober, electron beam prober or a mechanical micro/nano prober.


2020 ◽  
Vol 2020 (7) ◽  
pp. 103-1-103-6
Author(s):  
Taesub Jung ◽  
Yonghun Kwon ◽  
Sungyoung Seo ◽  
Min-Sun Keel ◽  
Changkeun Lee ◽  
...  

An indirect time-of-flight (ToF) CMOS image sensor has been designed with 4-tap 7 μm global shutter pixel in back-side illumination process. 15000 e- of high full-well capacity (FWC) per a tap of 3.5 μm pitch and 3.6 e- of read-noise has been realized by employing true correlated double sampling (CDS) structure with storage gates (SGs). Noble characteristics such as 86 % of demodulation contrast (DC) at 100MHz operation, 37 % of higher quantum efficiency (QE) and lower parasitic light sensitivity (PLS) at 940 nm have been achieved. As a result, the proposed ToF sensor shows depth noise less than 0.3 % with 940 nm illuminator in even long distance.


Author(s):  
Patrick Helfenstein ◽  
Konstantins Jefimovs ◽  
Eugenie Kirk ◽  
Conrad Escher ◽  
Hans-Werner Fink ◽  
...  

2021 ◽  
Author(s):  
Alvina Jean Tampos ◽  
Karl Villareal

Abstract Complementary Metal-Oxide Semiconductor (CMOS) Image Sensors are gaining popularity most especially in Automotive Safety and Advanced Driver-Assistance Systems (ADAS) applications. Customer application modules involve oftentimes a third party supplier. When failures involve interaction between an image sensor die and the customer's module, the Failure Analyst has to know the exact failure mechanism to pinpoint whether root cause is in the die fabrication (fab) or packaging assembly (third party supplier). Challenges can befall the analyst: failure modes can recover which renders the unit functional and laboratories most often do not have complete sophisticated analytical laboratory equipment for electrical testing, fault isolation and sample preparation. In this paper, a case study of a CMOS Image Sensor is presented wherein the failure mode recovered which was restored and how the structural limitations were overcome for fault isolation on both front- and back-side. A modified process flow was performed to visualize the defect through backside Focused Ion Beam (FIB) cross-section.


2002 ◽  
Vol 743 ◽  
Author(s):  
Kristin L. Bunker ◽  
Juan Carlos Gonzalez ◽  
Dale Batchelor ◽  
Terrence J. Stark ◽  
Phillip E. Russell

ABSTRACTElectron Beam Induced Current (EBIC) is a Scanning Electron Microscope (SEM)-based technique that can provide information on the electrical properties of semiconductor materials and devices. This work focuses on the design and implemenation of an EBIC system in a dedicated Scanning Transmission Electron Microscope (STEM). The STEM-EBIC technique was used in the characterization of an Indium Gallium Nitride (InGaN) quantum well Light Emitting Diode (LED). The conventional “H-bar” Transmission Electron Microscopy (TEM) sample preparation method using Focused Ion Beam Micromachining (FIBM) was adapted to create an electron-transparent membrane approximately 300 nm thick on the sample while preserving the electrical activity of the device. A STEM-EBIC sample holder with two insulated electrical feedthroughs making contact to the thinned LED was designed and custom made for these experiments. The simultaneous collection of Z-contrast images, EBIC images, and In and Al elemental images allowed for the determination of the p-n junction location, AlGaN and GaN barrier layers, and the thin InGaN quantum well layer within the device. The relative position of the p-n junction with respect to the thin InGaN quantum well was found to be (19 ± 3) nm from the center of the InGaN quantum well.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5138
Author(s):  
Jimin Lee ◽  
Sang-Hwan Kim ◽  
Hyeunwoo Kwen ◽  
Juneyoung Jang ◽  
Seunghyuk Chang ◽  
...  

This paper presents a CMOS depth image sensor with offset pixel aperture (OPA) using a back-side illumination structure to improve disparity. The OPA method is an efficient way to obtain depth information with a single image sensor without additional external factors. Two types of apertures (i.e., left-OPA (LOPA) and right-OPA (ROPA)) are applied to pixels. The depth information is obtained from the disparity caused by the phase difference between the LOPA and ROPA images. In a CMOS depth image sensor with OPA, disparity is important information. Improving disparity is an easy way of improving the performance of the CMOS depth image sensor with OPA. Disparity is affected by pixel height. Therefore, this paper compared two CMOS depth image sensors with OPA using front-side illumination (FSI) and back-side illumination (BSI) structures. As FSI and BSI chips are fabricated via different processes, two similar chips were used for measurement by calculating the ratio of the OPA offset to pixel size. Both chips were evaluated for chief ray angle (CRA) and disparity in the same measurement environment. Experimental results were then compared and analyzed for the two CMOS depth image sensors with OPA.


Sign in / Sign up

Export Citation Format

Share Document