Passenger Car Equivalents for Highway Cost Allocation

Author(s):  
Darren Torbic ◽  
Lily Elefteriadou ◽  
Tien-Jung Ho ◽  
Ying Wang

Existing passenger car equivalent (PCE) values do not necessarily serve the purposes of highway cost allocation well, since their derivation has followed from a need to determine equivalency for traffic operations purposes. Highway cost allocation demands better knowledge of equivalencies among vehicle classes, for a wide range of vehicle types, and under the full range of traffic conditions. There are several possible methods for PCE development and various suggested PCE values, but there is currently no information on the suitability of these methods and estimates for cost allocation purposes. A framework for the development of PCEs is set forth, and some final PCE values for the 20 vehicle types and 30 weight groups that could be used in the current Federal Highway Cost Allocation Study are provided. Using traffic simulation models, PCE values were calculated for each of the 12 facility types for various roadway segments (i.e., grades, length of grade, number of lanes). PCEs were also calculated for high and low traffic volumes for additional flexibility in assigning congestion-related costs. The PCEs obtained for each roadway and traffic condition were combined into a weighted-average PCE value for each vehicle type and highway facility type, reflective of the actual geometric conditions of the entire highway. Weighted-average PCEs were separately calculated for congested and uncongested conditions for two different vehicle percentages.

Author(s):  
Raunak Mishra ◽  
Pallav Kumar ◽  
Shriniwas S. Arkatkar ◽  
Ashoke Kumar Sarkar ◽  
Gaurang J. Joshi

This research was aimed at developing an area occupancy–based method for estimating passenger car unit (PCU) values for vehicle categories under heterogeneous traffic conditions on multilane urban roads for a wide range of traffic flow levels. First, PCU values of vehicle categories were determined according to the Transport and Road Research Laboratory definition and replaced the commonly considered measure of performance speed with area occupancy using simulation. The PCU values obtained were found to be significantly different for different volume-to-capacity ratios; this result shows that the PCU value is dynamic in nature. While the dynamic nature of PCU values is well appreciated, practitioners may prefer a single set of optimized PCU values (unique for each vehicle category). Hence, a new method with a matrix solution was proposed to estimate the optimized or unique set of PCU values with area occupancy as the performance measure. To check the credibility of the proposed method, the estimated PCU values were compared from existing guidelines regulated by the Indian Roads Congress (IRC) and values estimated with the widely accepted dynamic PCU concept of speed–area ratio. Results show that the PCU values suggested by IRC and the dynamic PCU concept using the speed–area ratio underestimate and overestimate the flows, respectively, at different traffic volumes. However, the values obtained with the area-occupancy concept were found to be consistent with the traffic flow in a cars-only traffic situation at different flow conditions. The derived set of optimized PCU values proposed can be useful for traffic engineers, researchers, and practitioners for capacity and level-of-service analysis under heterogeneous traffic conditions.


Author(s):  
Tanumoy Ghosh ◽  
Sudip Kumar Roy ◽  
Subhamay Gangopadhyay

The behavior of a driver of any vehicle is important in estimating heterogeneous traffic conditions with no strict lane discipline. In the present study, a micro-simulation model is used to analyze the mixed traffic condition with different drivers’ behavior parameters. The field data collected on traffic flow characteristics of multilane highways are used in the calibration and validation of the simulation model. Out of the ten coefficient of correlation (CC) parameters in the simulation model, five are used in the present study to make a model of simulation for heterogeneous traffic; the other five parameters are not considered for testing their influence on simulated capacity values as they represent very typical behavior of a driver, either in car-following, or in free-flow conditions. Two separate simulation models are made by changing the CC (CC0, CC1, CC2, CC7, and CC8) parameters, each for a four-lane divided and a six-lane divided highway as the geometric conditions of the roads and the traffic flow is different for both the cases. These models are then applied on two other sections of a four-lane divided and a six-lane divided highway to validate the parameters of the model developed earlier for other sections.


Author(s):  
Raj Pratap Singh ◽  
Himanshu Tekwani ◽  
Bhavesh Joshi ◽  
Pratheek Sudhakaran ◽  
Jitendra Singh

The knowledge of traffic volume is an important basic input required for planning, analysis and operation of roadway systems. A significant effort has been made in order to study the Traffic Volume of Dadabari Chauraha. For better understanding of the present status of traffic flow at the junction, traffic survey is conducted. The safe and time efficient movement of the people and goods is dependent on Traffic flow, which is directly connected to the traffic characteristics. In Traffic Flow we have to consider generally three parameters, Volume, Speed, and Capacity. While as a traffic volume may be defined as the number of vehicles passing a given section of road or traffic lane per unit time will be inappropriate when several types of vehicles with widely varying static and dynamic characteristics are comprised in the traffic. Due to mixed nature of traffic it gets difficult to accommodate all the kinds of traffic on these roads. The basic problem arises during the peak hours of the day when the traffic volume is highest on the road. The interaction between moving vehicles under such heterogeneous traffic condition is highly complex. The problem of measuring volume of such kind of traffic has been addressed by converting the different types of vehicles into equivalent passenger cars and expressing the volume in terms of Passenger Car Unit (PCU) per hour. Calculation of Passenger Car Units (PCU’s) for different vehicle types had been made. For a wide range of traffic volume and roadway conditions indicate that the PCU value of a vehicle significantly changes with change in traffic volume and width of roadway. some of the remedial measures to improve the traffic safety in the region such as widening the road, changing 4-lane to 6-lane or by providing more public transport can be recommended based on the outcomes of the work.


Author(s):  
Lily Elefteriadou ◽  
Darren Torbic ◽  
Nathan Webster

Passenger car equivalents (PCEs) have been used extensively in the Highway Capacity Manual to establish the impact of trucks, buses, and recreational vehicles on traffic operations. PCEs are currently being used for studying freeways, multilane highways, and two-lane highways. A heavy-vehicle factor is directly given for the impact of heavy vehicles at signalized intersections (and indirectly along arterials). These PCE values are typically based on a limited number of simulations and on older simulation models. In addition, the impact of variables such as traffic flow, truck percentage, truck type (i.e., length and weight/horsepower ratio), grade, and length of grade on PCEs has not been evaluated in depth for all facility types. The methodology for developing PCEs for different truck types for the full range of traffic conditions on freeways, two-lane highways, and arterials is described. Given the scope of this research and the variability of traffic conditions to be examined, simulation was selected as the most appropriate tool. The resulting PCE values for freeways, two-lane highways, and arterials indicated that some variables, such as percentage of trucks, do not always have the expected effect on PCEs, whereas other variables, such as vehicle type, are crucial in the calculations. Generally, major differences in PCEs occurred for the longer and steeper grades. There was great variability in PCE values as a function of the weight/horsepower ratio as well as of vehicle length.


Author(s):  
John Maynard Smith ◽  
Eors Szathmary

Over the history of life there have been several major changes in the way genetic information is organized and transmitted from one generation to the next. These transitions include the origin of life itself, the first eukaryotic cells, reproduction by sexual means, the appearance of multicellular plants and animals, the emergence of cooperation and of animal societies, and the unique language ability of humans. This ambitious book provides the first unified discussion of the full range of these transitions. The authors highlight the similarities between different transitions--between the union of replicating molecules to form chromosomes and of cells to form multicellular organisms, for example--and show how understanding one transition sheds light on others. They trace a common theme throughout the history of evolution: after a major transition some entities lose the ability to replicate independently, becoming able to reproduce only as part of a larger whole. The authors investigate this pattern and why selection between entities at a lower level does not disrupt selection at more complex levels. Their explanation encompasses a compelling theory of the evolution of cooperation at all levels of complexity. Engagingly written and filled with numerous illustrations, this book can be read with enjoyment by anyone with an undergraduate training in biology. It is ideal for advanced discussion groups on evolution and includes accessible discussions of a wide range of topics, from molecular biology and linguistics to insect societies.


Oxford Studies in Medieval Philosophy annually collects the best current work in the field of medieval philosophy. The various volumes print original essays, reviews, critical discussions, and editions of texts. The aim is to contribute to an understanding of the full range of themes and problems in all aspects of the field, from late antiquity into the Renaissance, and extending over the Jewish, Islamic, and Christian traditions. Volume 6 includes work on a wide range of topics, including Davlat Dadikhuda on Avicenna, Christopher Martin on Abelard’s ontology, Jeremy Skrzypek and Gloria Frost on Aquinas’s ontology, Jean‐Luc Solère on instrumental causality, Peter John Hartman on Durand of St.‐Pourçain, and Kamil Majcherek on Chatton’s rejection of final causality. The volume also includes an extended review of Thomas Williams of a new book on Aquinas’s ethics by Colleen McCluskey.


Author(s):  
Yogi Sheoran ◽  
Bruce Bouldin ◽  
P. Murali Krishnan

Inlet swirl distortion has become a major area of concern in the gas turbine engine community. Gas turbine engines are increasingly installed with more complicated and tortuous inlet systems, like those found on embedded installations on Unmanned Aerial Vehicles (UAVs). These inlet systems can produce complex swirl patterns in addition to total pressure distortion. The effect of swirl distortion on engine or compressor performance and operability must be evaluated. The gas turbine community is developing methodologies to measure and characterize swirl distortion. There is a strong need to develop a database containing the impact of a range of swirl distortion patterns on a compressor performance and operability. A recent paper presented by the authors described a versatile swirl distortion generator system that produced a wide range of swirl distortion patterns of a prescribed strength, including bulk swirl, twin swirl and offset swirl. The design of these swirl generators greatly improved the understanding of the formation of swirl. The next step of this process is to understand the effect of swirl on compressor performance. A previously published paper by the authors used parallel compressor analysis to map out different speed lines that resulted from different types of swirl distortion. For the study described in this paper, a computational fluid dynamics (CFD) model is used to couple upstream swirl generator geometry to a single stage of an axial compressor in order to generate a family of compressor speed lines. The complex geometry of the analyzed swirl generators requires that the full 360° compressor be included in the CFD model. A full compressor can be modeled several ways in a CFD analysis, including sliding mesh and frozen rotor techniques. For a single operating condition, a study was conducted using both of these techniques to determine the best method given the large size of the CFD model and the number of data points that needed to be run to generate speed lines. This study compared the CFD results for the undistorted compressor at 100% speed to comparable test data. Results of this study indicated that the frozen rotor approach provided just as accurate results as the sliding mesh but with a greatly reduced cycle time. Once the CFD approach was calibrated, the same techniques were used to determine compressor performance and operability when a full range of swirl distortion patterns were generated by upstream swirl generators. The compressor speed line shift due to co-rotating and counter-rotating bulk swirl resulted in a predictable performance and operability shift. Of particular importance is the compressor performance and operability resulting from an exposure to a set of paired swirl distortions. The CFD generated speed lines follow similar trends to those produced by parallel compressor analysis.


2018 ◽  
Vol 64 (4) ◽  
pp. 656-679 ◽  
Author(s):  
Jeffrey D Freeman ◽  
Lori M Rosman ◽  
Jeremy D Ratcliff ◽  
Paul T Strickland ◽  
David R Graham ◽  
...  

Abstract BACKGROUND Advancements in the quality and availability of highly sensitive analytical instrumentation and methodologies have led to increased interest in the use of microsamples. Among microsamples, dried blood spots (DBS) are the most well-known. Although there have been a variety of review papers published on DBS, there has been no attempt at describing the full range of analytes measurable in DBS, or any systematic approach published for characterizing the strengths and weaknesses associated with adoption of DBS analyses. CONTENT A scoping review of reviews methodology was used for characterizing the state of the science in DBS. We identified 2018 analytes measured in DBS and found every common analytic method applied to traditional liquid samples had been applied to DBS samples. Analytes covered a broad range of biomarkers that included genes, transcripts, proteins, and metabolites. Strengths of DBS enable its application in most clinical and laboratory settings, and the removal of phlebotomy and the need for refrigeration have expanded biosampling to hard-to-reach and vulnerable populations. Weaknesses may limit adoption in the near term because DBS is a nontraditional sample often requiring conversion of measurements to plasma or serum values. Opportunities presented by novel methodologies may obviate many of the current limitations, but threats around the ethical use of residual samples must be considered by potential adopters. SUMMARY DBS provide a wide range of potential applications that extend beyond the reach of traditional samples. Current limitations are serious but not intractable. Technological advancements will likely continue to minimize constraints around DBS adoption.


Sign in / Sign up

Export Citation Format

Share Document