Signalized Intersection Level of Service Incorporating Safety Risk

Author(s):  
Lin Zhang ◽  
Panos D. Prevedouros

A methodology that quantifies potential conflicts between left-turning vehicles and opposing through vehicles and pedestrians is presented. The methodology was based on and designed to be compatible with the Highway Capacity Manual 2000. A model was developed to combine delay and safety to get a comprehensive level-of-service indicator, the delay and safety index (DS). A case study of two intersections shows that if potential conflict is not considered, the signal timing plan with permitted left turns delivers a better level of service than that with protected left turns. However, if potential conflict is considered, the level of service under protected left-turn phasing is better than that under permitted left-turn phasing, according to the DS, when the safety weight factors exceed a certain value. The proposed method models the trade-off between safety and efficiency explicitly and considers both vehicle-to-vehicle and vehicle-to-pedestrian conflicts associated with left turns.

Author(s):  
Mark R. Virkler ◽  
Shashi Gannavaram ◽  
Anand Ramabhadran

The 1994 update of the Highway Capacity Manual (HCM) includes a planning procedure to estimate the capacity condition of a signalized intersection (Xcm). The planning method results can also be extended to a planning application of the more data-intensive HCM operational procedure to estimate intersection critical flow-to-capacity ratio (Xc) and level of service with only planning-level data. Both the planning procedure and the planning application of the operational procedure involve default adjustment factors and synthesized traffic signal timing (called the “default signal timing”). Data from 166 Missouri intersections were used to determine how well the planning approaches predict operational analysis results. In general, the default signal timings had shorter cycle lengths than the timing plans used at pretimed signals. The shorter cycle lengths led to slightly higher flow-to-capacity ratios, since a higher proportion of each cycle was devoted to lost time. The default signal timings also had more equal flow-to-capacity ratios within critical lane groups. The shorter cycle lengths and more equal flow-to-capacity ratios led to a predicted level of service that was the same or better than that calculated for actual conditions. For the subject intersections, locally calibrated default adjustment factors yielded better predictions of flow-to-capacity ratios and level of service than the HCM defaults. The planning value for Xcm was often less than the actual Xc for operational analysis of actual conditions. This was to be expected since Xcm is based on the maximum allowable cycle length. The HCM planning procedure is expected to receive wide use in a variety of planning and design applications. Calibration of appropriate local default values should improve the accuracy of the planning procedure results.


Author(s):  
Pei-Sung Lin ◽  
Kenneth G. Courage

The Highway Capacity Manual (HCM) provides a methodology in Chapter 9 to estimate the capacity and level of service at a signalized intersection as a function of traffic characteristics and signal timing. At traffic-actuated intersections, the signal timing changes from cycle to cycle in response to traffic demand. An accurate prediction of average phase times and their corresponding cycle length is required to assess the performance of intersections controlled by traffic-actuated signals. The current technique suggested in Appendix II of HCM Chapter 9 for this purpose has not been well accepted. A more comprehensive methodology and a more satisfactory analytical model are described that predict traffic-actuated signal timing for both isolated and coordinated modes with actuated phases. The proposed methodology and model have been verified by simulation augmented by limited field studies. The results are encouraging with respect to their general reliability and their compatibility with the current HCM Chapter 9 structure.


Author(s):  
V. F. Hurdle ◽  
Dominique Lord

The left-turn procedures in the Highway Capacity Manual are complex, and some of the equations are presented with little explanation of how they were obtained and the assumptions they embody. This paper is an analytic exploration of two of the four equations used to estimate gq, the amount of green time needed to discharge the opposing queue, and gf, the amount of green time available for through vehicles before the first left-turning vehicle enters the intersection. The investigation reveals surprising hidden assumptions underlying Equation 9-17 for gq, which lead to errors when the opposing flow includes left turns. In the case of Equation 9-20 for gf, the theoretical results are consistently about 5 s larger but otherwise in reasonable agreement with the empirical equation and provide insight into how it could be improved. An analytic approximation is offered either as a replacement or as a framework for an improved empirical model.


Author(s):  
Daniel J. Cook

Dallas phasing is an effective strategy for increasing the efficiency of protected-permissive left turns (PPLTs) at signalized intersections, without creating left-turn traps. The flashing yellow arrow (FYA) is the most widely used PPLT signal indication when Dallas phasing is utilized. The Highway Capacity Manual (HCM) signalized intersection methodology currently contains guidance on how to handle PPLTs with Dallas phasing. At intersections with the FYA indication, some agencies have been using a feature known as FYA delay, which delays the FYA indication, usually by 1 to 4 s. More recently, some agencies have also began using another feature, which suppresses the FYA when a conflicting pedestrian phase is active. The HCM does not contain guidance on how to handle FYA delay or suppression. This research proposed modifications to the HCM signalized intersection methodology to address these two FYA strategies. A sensitivity analysis was conducted to check the reasonableness of the proposed modifications. The sensitivity analysis showed that the proposed modifications are reasonable and produced the expected results.


Author(s):  
Natalia Zuniga-Garcia ◽  
Heidi W. Ross ◽  
Randy B. Machemehl

The principal objective of this research is to evaluate the multimodal performance of arterial corridors using currently available multimodal level of service (MMLOS) methodologies. Eight different MMLOS approaches are applied to a case study using an arterial corridor section in Austin, Texas. The methodologies applied are: Highway Capacity Manual; Transit Capacity and Quality of Service Manual; Charlotte, NC, Urban Street Design Guidelines; pedestrian and bicycle environmental quality indices; assessment of level of traffic stress; bicycle compatibility index; deficiency index; and Walk Score®, Bike Score®, and Transit Score®. The analysis is focused on the assessment of pedestrian, bicycle, and transit modes. The methodologies are evaluated and contrasted. The paper provides a comprehensive review of the current state of practice of multimodal evaluation and recommendations about the most appropriate approaches to assess multimodal performance of arterial corridors.


Author(s):  
Zihang Wei ◽  
Yunlong Zhang ◽  
Xiaoyu Guo ◽  
Xin Zhang

Through movement capacity is an essential factor used to reflect intersection performance, especially for signalized intersections, where a large proportion of vehicle demand is making through movements. Generally, left-turn spillback is considered a key contributor to affect through movement capacity, and blockage to the left-turn bay is known to decrease left-turn capacity. Previous studies have focused primarily on estimating the through movement capacity under a lagging protected only left-turn (lagging POLT) signal setting, as a left-turn spillback is more likely to happen under such a condition. However, previous studies contained assumptions (e.g., omit spillback), or were dedicated to one specific signal setting. Therefore, in this study, through movement capacity models based on probabilistic modeling of spillback and blockage scenarios are established under four different signal settings (i.e., leading protected only left-turn [leading POLT], lagging left-turn, protected plus permitted left-turn, and permitted plus protected left-turn). Through microscopic simulations, the proposed models are validated, and compared with existing capacity models and the one in the Highway Capacity Manual (HCM). The results of the comparisons demonstrate that the proposed models achieved significant advantages over all the other models and obtained high accuracies in all signal settings. Each proposed model for a given signal setting maintains consistent accuracy across various left-turn bay lengths. The proposed models of this study have the potential to serve as useful tools, for practicing transportation engineers, when determining the appropriate length of a left-turn bay with the consideration of spillback and blockage, and the adequate cycle length with a given bay length.


Author(s):  
Suhaib Al Shayeb ◽  
Nemanja Dobrota ◽  
Aleksandar Stevanovic ◽  
Nikola Mitrovic

Traffic simulation and optimization tools are classified, according to their practical applicability, into two main categories: theoretical and practical. The performance of the optimized signal timing derived by any tool is influenced by how calculations are executed in the particular tool. Highway Capacity Software (HCS) and Vistro implement the procedures defined in the Highway Capacity Manual, thus they are essentially utilized by traffic operations and design engineers. Considering its capability of timing diagram drafting and travel time collection studies, Tru-Traffic is more commonly used by practitioners. All these programs have different built-in objective function(s) to develop optimized signal plans for intersections. In this study, the performance of the optimal signal timing plans developed by HCS, Tru-Traffic, and Vistro are evaluated and compared by using the microsimulation software Vissim. A real-world urban arterial with 20 intersections and heavy traffic in Fort Lauderdale, Florida served as the testbed. To eliminate any bias in the comparisons, all experiments were performed under identical geometric and traffic conditions, coded in each tool. The evaluation of the optimized plans was conducted based on average delay, number of stops, performance index, travel time, and percentage of arrivals on green. Results indicated that although timings developed in HCS reduced delay, they drastically increased number of stops. Tru-Traffic signal timings, when only offsets are optimized, performed better than timings developed by all of the other tools. Finally, Vistro increased arrivals on green, but it also increased delay. Optimized signal plans were transferred manually from optimization tools to Vissim. Therefore, future research should find methods for automatically transferring optimized plans to Vissim.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Qinrui Tang ◽  
Bernhard Friedrich

Urban road networks may benefit from left turn prohibition at signalized intersections regarding capacity, for particular traffic demand patterns. The objective of this paper is to propose a method for minimizing the total travel time by prohibiting left turns at intersections. With the flows obtained from the stochastic user equilibrium model, we were able to derive the stage generation, stage sequence, cycle length, and the green durations using a stage-based method which can handle the case that stages are sharing movements. The final output is a list of the prohibited left turns in the network and a new signal timing plan for every intersection. The optimal list of prohibited left turns was found using a genetic algorithm, and a combination of several algorithms was employed for the signal timing plan. The results show that left turn prohibition may lead to travel time reduction. Therefore, when designing a signal timing plan, left turn prohibition should be considered on a par with other left turn treatment options.


2002 ◽  
Vol 1802 (1) ◽  
pp. 105-114 ◽  
Author(s):  
R. Tapio Luttinen

The Highway Capacity Manual (HCM) 2000 provides methods to estimate performance measures and the level of service for different types of traffic facilities. Because neither the input data nor the model parameters are totally accurate, there is an element of uncertainty in the results. An analytical method was used to estimate the uncertainty in the service measures of two-lane highways. The input data and the model parameters were considered as random variables. The propagation of error through the arithmetic operations in the HCM 2000 methodology was estimated. Finally, the uncertainty in the average travel speed and percent time spent following was analyzed, and four approaches were considered to deal with uncertainty in the level of service.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Ahmed I. Z. Mohamed ◽  
Yusheng Ci ◽  
Yiqiu Tan

Mega elliptical roundabout is a new intersection on rural multilane highways. This intersection was developed in a previous paper using simulation data, and the authors found that it is better than interchange (full cloverleaf) in most scenarios of traffic flow. Basically, there are no guidelines or procedures for designing mega elliptical roundabout in AASHTO Green Book, Federal Highway Administration guides, and Highway Capacity Manual. Thus, the purpose of this study is to analyze the traffic operation performance and propose a methodology for calculating the capacity of mega elliptical roundabout and also the level of service by gap acceptance theory. Moreover, this research studied the influence of different values of truck ratios and also different values of a major highway speed on geometric design and traffic operation performance for mega elliptical roundabout. To validate the thoroughness of the proposed methodology, VISSIM simulations were conducted. This research will assist practitioners in determining the appropriate geometric design, assessing mega elliptical roundabout intersections, and making comparisons with other alternatives.


Sign in / Sign up

Export Citation Format

Share Document