Calibration of a Digital Camera for Rapid Auditing of In Situ Intersection Illumination

Author(s):  
Franklin E. Gbologah ◽  
Angshuman Guin ◽  
Roger Purcell ◽  
Michael O. Rodgers

The regular auditing of installed roadway lighting performance is essential in ensuring that in situ light levels are within design specifications despite the effects of lamp deterioration or changes in roadway functional class. However, existing guidelines for measuring roadway lighting performance are tedious and often impractical for transportation agencies and municipalities, which are already faced with time and resource constraints. A method for calibrating a digital single lens reflex camera for rapid assessment of illumination levels at roadway intersections is developed in this paper. The method uses an image analysis approach to extract pixel information in a digital image and link it to the scene luminance. It uses high-precision light meters to perform an initial calibration of the digital camera that has proved to be stable over long periods. The method was tested with field data, and the results indicate that average scene luminance derived from this method differs by less than 4% from the average observed scene luminance captured by high-precision luminance meters involving a rigorous field measurement methodology. The methodology developed in this study offers transportation agencies and municipalities a rapid, inexpensive, and efficient method for auditing the adequacy of roadway illumination.

2005 ◽  
Vol 22 (9) ◽  
pp. 1373-1380 ◽  
Author(s):  
Darek J. Bogucki ◽  
Burton H. Jones ◽  
Mary-Elena Carr

Abstract The rate of horizontal diffusivity or lateral dispersion is key to understanding the dispersion of tracers and contaminants in the ocean, and it is an elusive, yet crucial, parameter in numerical models of circulation. However, the difficulty of parameterizing horizontal mixing is exacerbated in the shallow coastal ocean, which points to the need for more direct measurements. Here, a novel and inexpensive approach to remotely measure the rate of horizontal diffusivity is proposed. Current shipboard measurement techniques require repeated surveys and are thus time consuming and labor intensive. Furthermore, intensive in situ sampling is generally impractical for routine coastal management or for rapid assessment in the case of emergencies. A remote approach is particularly useful in shallow coastal regions or those with complex bathymetry. A time series of images from a dye-release experiment was obtained with a standard three-megapixel digital camera from a helicopter that hovered over the study area. The red–green–blue (RGB) images were then 1) analyzed to distinguish the dye from the ambient color of the water and adjacent land features, 2) orthorectified, and 3) analyzed to obtain advection and diffusion rates of the thin subsurface dye layer. A horizontal current of the order of 6 cm s−1 was found. The estimated horizontal eddy diffusivity rate for scales of O(10 m) in the harbor was 0.1 m2 s−1. The dye diffusivity and advection rate that are calculated from the images are consistent with independent calculations based on in situ measurements of current speed fluctuations.


2019 ◽  
Author(s):  
Nikki Theofanopoulou ◽  
Katherine Isbister ◽  
Julian Edbrooke-Childs ◽  
Petr Slovák

BACKGROUND A common challenge within psychiatry and prevention science more broadly is the lack of effective, engaging, and scale-able mechanisms to deliver psycho-social interventions for children, especially beyond in-person therapeutic or school-based contexts. Although digital technology has the potential to address these issues, existing research on technology-enabled interventions for families remains limited. OBJECTIVE The aim of this pilot study was to examine the feasibility of in-situ deployments of a low-cost, bespoke prototype, which has been designed to support children’s in-the-moment emotion regulation efforts. This prototype instantiates a novel intervention model that aims to address the existing limitations by delivering the intervention through an interactive object (a ‘smart toy’) sent home with the child, without any prior training necessary for either the child or their carer. This pilot study examined (i) engagement and acceptability of the device in the homes during 1 week deployments; and (ii) qualitative indicators of emotion regulation effects, as reported by parents and children. METHODS In this qualitative study, ten families (altogether 11 children aged 6-10 years) were recruited from three under-privileged communities in the UK. The RA visited participants in their homes to give children the ‘smart toy’ and conduct a semi-structured interview with at least one parent from each family. Children were given the prototype, a discovery book, and a simple digital camera to keep at home for 7-8 days, after which we interviewed each child and their parent about their experience. Thematic analysis guided the identification and organisation of common themes and patterns across the dataset. In addition, the prototypes automatically logged every interaction with the toy throughout the week-long deployments. RESULTS Across all 10 families, parents and children reported that the ‘smart toy’ was incorporated into children’s emotion regulation practices and engaged with naturally in moments children wanted to relax or calm down. Data suggests that children interacted with the toy throughout the duration of the deployment, found the experience enjoyable, and all requested to keep the toy longer. Child emotional connection to the toy—caring for its ‘well-being’—appears to have driven this strong engagement. Parents reported satisfaction with and acceptability of the toy. CONCLUSIONS This is the first known study investigation of the use of object-enabled intervention delivery to support emotion regulation in-situ. The strong engagement and qualitative indications of effects are promising – children were able to use the prototype without any training and incorporated it into their emotion regulation practices during daily challenges. Future work is needed to extend this indicative data with efficacy studies examining the psychological efficacy of the proposed intervention. More broadly, our findings suggest the potential of a technology-enabled shift in how prevention interventions are designed and delivered: empowering children and parents through ‘child-led, situated interventions’, where participants learn through actionable support directly within family life, as opposed to didactic in-person workshops and a subsequent skills application.


1987 ◽  
Vol 44 (12) ◽  
pp. 2144-2154 ◽  
Author(s):  
M. Putt ◽  
G. P. Harris ◽  
R. L. Cuhel

Measurement of 1-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) enhanced fluorescence (FDCMU) suggested that photoinhibition of photosynthesis was frequently an artifact of in situ bottle incubations in Lake Ontario phytoplankton. In a seasonal study, FDCMU of all populations was depressed by bright light in an incubator. However, when the euphotic zone did not exceed the depth of the mixed layer, vertical transport of phytoplankton into either low-light or dark regions apparently allowed reversal of photoinhibition of FDCMU. Advantages of FDCMU as a bioassay of vertical mixing include rapidity of response time, ease of measurement in the field, and insensitivity of this parameter to changes in phosphorus status of the population. Because of seasonal changes in the photoadaptive response of natural populations, the rate constants and threshold light levels required to cause the response must be determined at each use if the method is to be quantitative.


Sensors ◽  
2009 ◽  
Vol 9 (7) ◽  
pp. 5825-5843 ◽  
Author(s):  
Lonneke Goddijn-Murphy ◽  
Damien Dailloux ◽  
Martin White ◽  
Dave Bowers

Author(s):  
Alexander Kiy ◽  
Christian Notthoff ◽  
Shankar Dutt ◽  
Mark Grigg ◽  
Andrea Hadley ◽  
...  

In situ small angle X-ray scattering (SAXS) measurements of ion track etching of polycarbonate foils are used to directly monitor the selective dissolution of ion tracks with high precision, including...


2016 ◽  
Author(s):  
Thomas Röckmann ◽  
Simon Eyer ◽  
Carina van der Veen ◽  
Maria E. Popa ◽  
Béla Tuzson ◽  
...  

Abstract. High precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS) based technique for in-situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in-situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of +(0.05 ± 0.03) ‰ for δ13C and –(3.6 ± 0.4) ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high precision and temporal resolution dataset does not only reveal the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site, but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget, when they are performed at multiple sites that are representative for the entire European domain.


Sign in / Sign up

Export Citation Format

Share Document