scholarly journals Field evaluations of 14 sweet cherry cultivars as pollinators for cv. Regina (Prunus avium, L.)

2007 ◽  
Vol 13 (3) ◽  
Author(s):  
S. Thurzó ◽  
M. Grandi ◽  
L. Lagezza ◽  
S. Lugli ◽  
I. J. Holb ◽  
...  

In this study, the pollen of 14 sweet cherry cultivars (‘Anella’, ‘Duroni 3', 'Badacsony', 'Cristalina', 'Ferbolus', 'Ferrovia', 'Georgia', 'Hudson', 'Kordia', 'Sam', 'Schneiders’, ‘Spate’, ‘Knorpelkirsche', 'Skeena', 'Summit', 'Sylvia') was used to fertilize the emasculated flowers of sweet cherry cv. 'Regina'. Fruit set was assessed three times during fruit development: 14 May, 30 May and 27 May 2007. We observed full incompatibility among the 14 cultivars for cv. 'Cristalina', which is in the same S-allele group as cv. 'Regina'. After analysis of our data, we have results about fertilization efficiency of the cultivars. Most of the evaluated cultivars are inadequate to fertilize cv. 'Regina' to a sufficient degree. There were two exceptions, cv. 'Sam' and cv. 'Skeena', where percentage of ripened fruits was above 20%. These two cultivars can guarantee such a pollination, which ensures ample quantity of ripened fruits. Results of this study have proved three other cultivars to be quite good pollinators for cv. 'Regina'. In conclusion, ideal pollinators for cv. 'Regina' could be — apart from above-mentioned two cultivars, 'Sam' and 'Skeena' — cvs. 'Sylvia' and 'Bianca', which was suggested by more literature sources.

2004 ◽  
Vol 10 (1) ◽  
Author(s):  
Zs. Békefi

Cross-incompatibility is a common phenomenon between various sweet cherry (Prunus avium L.) cultivars. Traditionally, choosing cross-compatible cultivar pairs is based on test crossings in the field. There is a lack of information about fertility relations of novel Hungarian sweet cherry cultivars and selections. We have studied cross-incompatibility in 42 sweet cherry cultivar pairs by test-crossings in the field. Out of those, 3 combinations showed incompatibility and 15 pairs were compatible. Test-crossing results proved that with the knowledge of S-allele constitution of Hungarian cultivars incompatible cultivar pairs are recognised in practice reliably. However, we assume that in sterility not only the S-gene system, but other factors (e.g. abnormal development of pollen or flower) also occur, therefore, their examination would be needed.


2001 ◽  
Vol 81 (4) ◽  
pp. 753-760 ◽  
Author(s):  
Cheol Choi, and Robert L. Andersen

Fruit set on seven self-fertile (SF) sweet cherry genotypes from the Cornell Sweet Cherry Breeding Program was investigated. The S-alleles of all tested genotypes, based on controlled pollination and PCR-based S-allele typing analysis were determined to be: S1S4’ for Lapins, and S3S4’ for Stella, Starkrimson, NY 13688, NY 13696, NY 13788 and NY 13791. Higher fruit set of open-pollinated self-fertile genotypes indicated that the additional pollen donor was probably advantageous for fruit set in self-fertiles in the preliminary field study. However, no statistically significant differences were found between fully and self- (half compatible) pollination in caged trees in subsequent years’ studies. This inconsistency may have been due to shading by cages (for self-pollination only) or to differences in bee activity in caged trees as compared with open-pollinations made during preliminary studies. Additionally, the variation in fruit setting potential was dependent on genotype. Spring frost injury reduced fruit setting potential in self-fertile sweet cherries but pollen quality was not associated with variable fruit set. The results suggest that self-pollination would produce optimal fruit set in self-fertile sweet cherry cultivars regardless of partial pollen incompatibility. However, a more detailed study including fruit setting factors other than spring frost injury, and varying setting capacity depending on genotypes, would be required for a more complete determination of the commercial utility of growing self-fertile sweet cherries in solid blocks. Key words: Prunus avium L, sweet cherry, pollination, fruit set


Genetika ◽  
2011 ◽  
Vol 43 (2) ◽  
pp. 397-406 ◽  
Author(s):  
Sanja Radicevic ◽  
Radosav Cerovic ◽  
Sladjana Maric ◽  
Milena Djordjevic

The paper presents results of eight-year study (1999-2006) of flowering phenophase in 21 introduced sweet cherry cultivars grown under the agro-environmental conditions of West Serbia. Flowering time, as well as progress and abundance of flowering were studied, and classification of the studied cultivars according to flowering time was derived. On the basis of mean several-year overlap in phenophase of full flowering and on the grounds of so far known data on classification of these cultivars among incompatibility groups, we have offered a recommendation for their cultivation in orchards whereby the most effective pollination and fertilization can be ensured as well as good fruit-set and satisfactory fruit yields.


Author(s):  
Zs. Békefi

Fruit set of two sweet cherry cultivars (Alex' and 'Stella' ) and four Hungarian selections have been studied over two years following open pollination, unassisted self-pollination (autogamy) and artificial self-pollination (geitonogamy). Among accessions 'IV-6/240' proved to be self-sterile, while the other five revealed to be self-fertile. Significant differences have been found in fruit set among years and among pollination treatments but not among self-fertile accessions. Fruit set following unassisted self-pollination was significantly lower than of other pollination treatments. Thus pollen transfer is essential for profitable yield in sweet cherry growing. There was no significant relationship in the fruit set of open- and self-pollination.


2005 ◽  
Vol 83 (2) ◽  
pp. 202-210 ◽  
Author(s):  
Bjarne Hjelmsted Pedersen

The tensile strengths of graftings between three selected sweet cherry cultivars and five selected cherry rootstocks were determined with an Instron instrument 6, 12, and 18 weeks after grafting and compared with the tensile strength of self-grafted rootstocks and graftings of rootstocks used as scions. The combination of sweet cherry cultivars and rootstocks was selected to provide a range of compatibility based on preliminary work. The tensile strengths of sweet cherry cultivars grafted on different rootstocks never exceeded the tensile strengths of the self-grafted rootstocks. Rootstocks grafted as scions on Prunus avium L. rootstocks and self-grafted rootstocks produced some of the strongest unions tested and also produced union strength much faster than any of the other combinations. The degree of compatibility was quantified and results indicated that if this value was below 0.2, measured 18 weeks after grafting, it corresponded to combinations with major risks of delayed incompatibility.Key words: tensile strength, grafting, compatibility, sweet cherry, Prunus avium.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 534 ◽  
Author(s):  
Dominika Średnicka-Tober ◽  
Alicja Ponder ◽  
Ewelina Hallmann ◽  
Agnieszka Głowacka ◽  
Elżbieta Rozpara

The aim of this study was to evaluate and compare the content of a number of bioactive compounds and antioxidant activity of fruits of selected local and commercial sweet cherry (Prunus avium L.) cultivars. The experiment showed that the selected cultivars of sweet cherries differ significantly in the content of polyphenolic compounds and carotenoids. The fruits of commercial sweet cherry cultivars were, on average, richer in polyphenols (the sum of phenolic compounds determined chromatographically), flavonoids, as well as anthocyanins and were characterized by higher antioxidant activity when compared to the local, traditional cultivars. In the group of the traditional sweet cherry cultivars, particular attention could be paid to Black Late cv., showing the highest antioxidant activity of fruits. In the group of commercial sweet cherry cultivars, Cordia and Sylvia fruits could be recognized as being rich in bioactive compounds with high antioxidant activity. Yellow skin cultivars were characterized by the highest concentrations of carotenoids. Strong positive correlations between the identified bioactive compounds and antioxidant activity of fruits were also found. Although different cultivars of sweet cherries show a high variability in phenolics and carotenoids profiles as well as in the antioxidant activity of fruits, they all should be, similarly to other types of cherries, recognized as a rich source of bioactive compounds with an antioxidant potential.


2006 ◽  
Vol 86 (4) ◽  
pp. 1197-1202 ◽  
Author(s):  
Frank Kappel ◽  
Peter Toivonen ◽  
Sabina Stan ◽  
Darrell-Lee McKenzie

A recently developed technique was used to determine the susceptibility to fruit surface pitting of new sweet cherry (Prunus avium L.) cultivars and compare them to an industry standard. The cultivars tested included Bing (industry standard), Cristalina, Lapins, Sandra Rose, Santina, Skeena, Sonata, Staccato, and Sweetheart. Fruit were harvested at commercial maturity, injured, held at 1°C for 2 wk and then rated for fruit surface pitting. The cultivars Lapins, Skeena, Staccato, and Sweetheart had less pitting than Bing. Cristalina and Sonata tended to have similar levels of injury to Bing and Sandra Rose and Santina tended to have more severe pitting than Bing. Key words: Sweet cherries, cultivars, simulated pitting injury


Genetika ◽  
2013 ◽  
Vol 45 (3) ◽  
pp. 939-952 ◽  
Author(s):  
Sanja Radicevic ◽  
Sladjana Maric ◽  
Radosav Cerovic ◽  
Milena Djordjevic

The paper presents results of a three-year study of self-(in)compatibility in four economically important sweet cherry genotypes - ?Karina?, ?Kordia?, ?Regina? and ?Summit?, under agro-environmental conditions of Western Serbia. Determination of S-RNase genotype, microscopic observation of the pollen tube growth rate and assaying of the fruit set level after self-pollination were used to assess the genotypes. ?Kordia? (S3S6), ?Regina? (S1S3) and ?Summit? (S1S2) are self-incompatible genotypes, with a considerable number of pollen tubes ending the growth in the middle third of the style and lack of fruit set. ?Karina?, as S3S4 genotype, behaved as self-compatible, since its pollen tubes reached the base of the style and ovary, penetrating the nucellus. In addition, fruit set for ?Karina? was recorded in all three years of study (40.26%, 18.79% and 21.81%, respectively).


Author(s):  
Agnes Kivistik ◽  
Liina Jakobson ◽  
Kersti Kahu ◽  
Kristiina Laanemets

AbstractThe pollination of self-incompatible diploid sweet cherry is determined by the S-locus alleles. We resolved the S-alleles of 50 sweet cherry cultivars grown in Estonia and determined their incompatibility groups, which were previously unknown for most of the tested cultivars. We used consensus primers SI-19/20, SI-31/32, PaConsI, and PaConsII followed by allele-specific primers and sequencing to identify sweet cherry S-genotypes. Surprisingly, 48% (24/50) of the tested cultivars, including 17 Estonian cultivars, carry the rare S-allele S17, which had initially been described in wild sweet cherries in Belgium and Germany. The S17-allele in Estonian cultivars could originate from ‘Leningradskaya tchernaya’ (S6|S17), which has been extensively used in Estonian sweet cherry breeding. Four studied cultivars carrying S17 are partly self-compatible, whereas the other 20 cultivars with S17 have not been reported to be self-compatible. The recommended pollinator of seven self-incompatible sweet cherries is of the same S-genotype, including four with S17-allele, suggesting heritable reduced effectiveness of self-infertility. We classified the newly genotyped sweet cherry cultivars into 15 known incompatibility groups, and we proposed four new incompatibility groups, 64–67, for S-locus genotypes S3|S17, S4|S17, S5|S17, and S6|S17, respectively, which makes them excellent pollinators all across Europe. Alternatively, the frequency of S17 might be underestimated in Eastern European populations and some currently unidentified sweet cherry S-alleles might potentially be S17.


Sign in / Sign up

Export Citation Format

Share Document