scholarly journals INVESTIGATING THE STABILITY OF LONG ONE- DIMENSIONAL WAVES IN A SLOPING RUNOFF

World Science ◽  
2020 ◽  
Vol 1 (1(53)) ◽  
pp. 18-22
Author(s):  
Otar Natishvili ◽  
Irakli Kruashvili ◽  
Irma Inashvili

The paper is dedicated to the problem of the influence of waves in shallow-water slope flows on the intensity of soil erosion that has not been considered earlier. The stability of one-dimensional continuous waves on the free surface of the sloping runoff is analyzed, both at constant, and with the variable flow along the way. Attention is drawn towards the unsteady flow process and the shape of the free surface in various planes.

1968 ◽  
Vol 33 (1) ◽  
pp. 93-112 ◽  
Author(s):  
Mario H. Gradowczyk

Wave propagation in one-dimensional erodible-bed channels is discussed by using the shallow-water approximation for the fluid and a continuity equation for the bed. In addition to gravity waves, a third wave, which gives the velocity of propagation of a bed disturbance, is found. An appropriate dimensional analysis yields the quasi-steady approximation for the complete shallow-water equations.The well-known linear stability analysis of free-surface flows is extended to include the erodibility of the bed. The critical Froude numberFcabove which the free-surface of the fluid may become unstable is obtained. It is shown that erodibility increases the stability of the free surface, in qualitative agreement with previous experiments ifqb>qs,qbandqsbeing respectively the contact-bed discharge and suspended-material discharge. The stability theory is also used to discuss coupled beds and surface waves. From it, five different configurations have been obtained: a sinusoidal wave pattern moving downstream, a transition zone and antidunes moving upstream, moving downstream and stationary. These bed forms are in agreement with experimental results; hence shallow-water theory seems to give a reasonable explanation of the boundary instability.It is shown that the quasi-steady approximation and Kennedy's (1963) stability analysis will be in agreement if (kh)2[Lt ]1, wherekis the wave number, andhis the depth of the water. When the phase shift δ is introduced in the quasi-steady approximation, the five bed patterns derived from the full equations are found again.


2016 ◽  
Vol 21 (1) ◽  
pp. 35 ◽  
Author(s):  
Andreas Tigor Oktaga ◽  
Suripin Suripin ◽  
Suseno Darsono

One dimensional flow is often used as a flood simulation for the planning capacity of the river. Flood is a type of unsteady non-uniform flow, that can be simulated using HEC-RAS. HEC-RAS software is often used for flood modeling with a one-dimensional flow method. Unsteady flow modeling results in HEC-RAS sometimes refer to error and warning due to unstable analysis program. The stability program among others influenced bend in the river flow, the steep slope of the river bottom, and changes in cross-section shape. Because the flood handling required maximum discharge and maximum flood water level, then a steady flow is often used as an alternative to simulate the flood flow. This study aimed to determine the advantages and disadvantages of modeling unsteady non-uniform and steady non-uniform flow. The research location in the Kanal Banjir Barat, in the Semarang City. Hydraulics modeling uses HEC-RAS 4.1 and for discharge the plan is obtained from the HEC-HMS 3.5. Results of the comparison modeling hydraulics the modeling of steady non-uniform flow has a tendency water level is higher and modeling of unsteady non-uniform flow takes longer to analyze. Results of the comparison the average flood water level maximun is less than 15%  (± 0,3 meters), that is 0.27 meters (13.16%) for Q50, 0.25 meters (11.56%) for Q100, dan 0.16 meters (4.73%) for Q200. So the modeling steady non-uniform flow can still be used as a companion version the modeling unsteady non-uniform flow.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Haifa Bin Jebreen ◽  
Fairouz Tchier

Herein, an efficient algorithm is proposed to solve a one-dimensional hyperbolic partial differential equation. To reach an approximate solution, we employ the θ-weighted scheme to discretize the time interval into a finite number of time steps. In each step, we have a linear ordinary differential equation. Applying the Galerkin method based on interpolating scaling functions, we can solve this ODE. Therefore, in each time step, the solution can be found as a continuous function. Stability, consistency, and convergence of the proposed method are investigated. Several numerical examples are devoted to show the accuracy and efficiency of the method and guarantee the validity of the stability, consistency, and convergence analysis.


Author(s):  
E.R Johnson ◽  
G.G Vilenski

This paper describes steady two-dimensional disturbances forced on the interface of a two-layer fluid by flow over an isolated obstacle. The oncoming flow speed is close to the linear longwave speed and the layer densities, layer depths and obstacle height are chosen so that the equations of motion reduce to the forced two-dimensional Korteweg–de Vries equation with cubic nonlinearity, i.e. the forced extended Kadomtsev–Petviashvili equation. The distinctive feature noted here is the appearance in the far lee-wave wake behind obstacles in subcritical flow of a ‘table-top’ wave extending almost one-dimensionally for many obstacles widths across the flow. Numerical integrations show that the most important parameter determining whether this wave appears is the departure from criticality, with the wave appearing in slightly subcritical flows but being destroyed by two-dimensional effects behind even quite long ridges in even moderately subcritical flow. The wave appears after the flow has passed through a transition from subcritical to supercritical over the obstacle and its leading and trailing edges resemble dissipationless leaps standing in supercritical flow. Two-dimensional steady supercritical flows are related to one-dimensional unsteady flows with time in the unsteady flow associated with a slow cross-stream variable in the two-dimensional flows. Thus the wide cross-stream extent of the table-top wave appears to derive from the combination of its occurrence in a supercritical region embedded in the subcritical flow and the propagation without change of form of table-top waves in one-dimensional unsteady flow. The table-top wave here is associated with a resonant steepening of the transition above the obstacle and a consequent twelve-fold increase in drag. Remarkably, the table-top wave is generated equally strongly and extends laterally equally as far behind an axisymmetric obstacle as behind a ridge and so leads to subcritical flows differing significantly from linear predictions.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 353
Author(s):  
Ligia Munteanu ◽  
Dan Dumitriu ◽  
Cornel Brisan ◽  
Mircea Bara ◽  
Veturia Chiroiu ◽  
...  

The purpose of this paper is to study the sliding mode control as a Ricci flow process in the context of a three-story building structure subjected to seismic waves. The stability conditions result from two Lyapunov functions, the first associated with slipping in a finite period of time and the second with convergence of trajectories to the desired state. Simulation results show that the Ricci flow control leads to minimization of the displacements of the floors.


2021 ◽  
Vol 83 (3) ◽  
Author(s):  
Ginger Egberts ◽  
Fred Vermolen ◽  
Paul van Zuijlen

AbstractTo deal with permanent deformations and residual stresses, we consider a morphoelastic model for the scar formation as the result of wound healing after a skin trauma. Next to the mechanical components such as strain and displacements, the model accounts for biological constituents such as the concentration of signaling molecules, the cellular densities of fibroblasts and myofibroblasts, and the density of collagen. Here we present stability constraints for the one-dimensional counterpart of this morphoelastic model, for both the continuous and (semi-) discrete problem. We show that the truncation error between these eigenvalues associated with the continuous and semi-discrete problem is of order $${{\mathcal {O}}}(h^2)$$ O ( h 2 ) . Next we perform numerical validation to these constraints and provide a biological interpretation of the (in)stability. For the mechanical part of the model, the results show the components reach equilibria in a (non) monotonic way, depending on the value of the viscosity. The results show that the parameters of the chemical part of the model need to meet the stability constraint, depending on the decay rate of the signaling molecules, to avoid unrealistic results.


Sign in / Sign up

Export Citation Format

Share Document