scholarly journals TOWARDS AN EFFICIENT TRAFFIC CONGESTION PREDICTION METHOD BASED ON NEURAL NETWORKS AND BIG GPS DATA

2019 ◽  
Vol 20 (1) ◽  
pp. 108-118 ◽  
Author(s):  
Wiam Elleuch ◽  
Ali Wali ◽  
Adel M. Alimi

ABSTRACT: The prediction of accurate traffic information such as speed, travel time, and congestion state is a very important task in many Intelligent Transportations Systems (ITS) applications. However, the dynamic changes in traffic conditions make this task harder. In fact, the type of road, such as the freeways and the highways in urban regions, can influence the driving speeds and the congestion state of the corresponding road. In this paper, we present a NNs-based model to predict the congestion state in roads. Our model handles new inputs and distinguishes the dynamic traffic patterns in two different types of roads: highways and freeways. The model has been tested using a big GPS database gathered from vehicles circulating in Tunisia. The NNs-based model has shown their capabilities of detecting the nonlinearity of dynamic changes and different patterns of roads compared to other nonparametric techniques from the literature. ABSTRAK: Ramalan maklumat trafik yang tepat seperti kelajuan, masa perjalanan dan keadaan kesesakan adalah tugas yang sangat penting dalam banyak aplikasi Sistem Pengangkutan Pintar (ITS). Walau bagaimanapun, perubahan keadaan lalu lintas yang dinamik menjadikan tugas ini menjadi lebih sukar. Malah, jenis jalan raya, seperti jalan raya dan lebuh raya di kawasan bandar, boleh mempengaruhi kelajuan memandu dan keadaan kesesakan jalan yang sama. Dalam makalah ini, kami membentangkan model berasaskan NN untuk meramalkan keadaan kesesakan di jalan raya. Model kami mengendalikan input baru dan membezakan corak trafik dinamik dalam dua jenis jalan raya yang lebuh raya dan jalan raya. Model ini telah diuji menggunakan pangkalan data GPS yang besar yang dikumpulkan dari kenderaan yang beredar di Tunisia. Model berasaskan NNs telah menunjukkan keupayaan mereka untuk mengesan ketiadaan perubahan dinamik dan pola jalan yang berbeza berbanding dengan teknik nonparametrik yang lain dari kesusasteraan.

2020 ◽  
Vol 7 (4) ◽  
pp. 667
Author(s):  
Gede Herdian Setiawan ◽  
I Ketut Dedy Suryawan

<p>Pertumbuhan jumlah kendaraan yang semakin meningkat setiap tahunnya mengakibatkan volume kendaraan yang melintasi ruas jalan semakin padat yang kerap mengakibatkan kemacetan lalu lintas. Kemacetan lalu lintas dapat menjadi beban biaya yang signifikan terhadap kegiatan ekonomi masyarakat. Informasi lalu lintas yang dinamis seperti informasi kondisi lalu lintas secara langsung <em>(real time)</em> akan membantu mempengaruhi aktivitas masyarakat pengguna lalu lintas untuk melakukan perencanaan dan penjadwalan aktivitas yang lebih baik. Penelitian ini mengusulkan model pengamatan kondisi lalu lintas berbasis data GPS pada <em>smartphone</em>, untuk informasi kondisi lalu lintas secara langsung. GPS <em>Receiver</em> pada <em>smartphone</em> menghasilkan data lokasi secara instan dan bersifat mobile sehingga dapat digunakan untuk pengambilan data kecepatan kendaraan secara langsung. Kecepatan kendaraan diperoleh berdasarkan jarak perpindahan koordinat kendaraan dalam satuan detik selanjutnya di konversi menjadi satuan kecepatan (km/jam) kemudian data kecepatan kendaraan di proses menjadi informasi kondisi lalu lintas. Secara menyeluruh model pengamatan berfokus pada tiga tahapan, yaitu akuisisi data kecepatan kendaraan berbasis GPS pada <em>smartphone</em>, pengiriman data kecepatan dan visualisasi kondisi lalu lintas berbasis GIS. Pengujian dilakukan pada ruas jalan kota Denpasar telah mampu mendapatkan data kecepatan kendaraan dan mampu menunjukkan kondisi lalu lintas secara langsung dengan empat kategori keadaan lalu lintas yaitu garis berwarna hitam menunjukkan lalu lintas macet dengan kecepatan kendaraan kurang dari 17 km/jam, merah menunjukkan padat dengan kecepatan kendaraan 17 km/jam sampai 27 km/jam, kuning menunjukkan sedang dengan kecepatan kendaraan 26 km/jam sampai 40 km/jam dan hijau menunjukkan lancar dengan kecepatan kendaraan diatas 40 km/jam.</p><p> </p><p><em><strong>Abstract</strong></em></p><p class="Abstract"><em>The growth in the number of vehicles that is increasing every year has resulted in the volume of vehicles crossing the road increasingly congested which often results in traffic congestion. Traffic congestion can be a significant cost burden on economic activities. Dynamic traffic information such as information on real time traffic conditions will help influence the activities of the traffic user community to better plan and schedule activities. This study proposes a traffic condition observation model based on GPS data on smartphones, for information on real time traffic conditions. The GPS Receiver on the smartphone produces location and coordinate data instantly and is mobile so that it can be used for direct vehicle speed data retrieval. Vehicle speed is obtained based on the displacement distance of the vehicle's coordinates in units of seconds and then converted into units of speed (km / h), the vehicle speed data is then processed into information on traffic conditions. Overall, the observation model focuses on three stages, namely GPS-based vehicle speed data acquisition on smartphones, speed data delivery and visualization of GIS-based traffic conditions. Tests carried out on the Denpasar city road segment have been able to obtain vehicle speed data and are able to show traffic conditions directly with four categories of traffic conditions, namely black lines indicating traffic jammed with vehicle speeds of less than 17 km / h, red indicates heavy with speed vehicles 17 to 27 km / h, yellow indicates medium speed with vehicles 26 km/h to 40 km / h and green shows fluent with vehicle speeds above 40 km / h.</em></p><p><em><strong><br /></strong></em></p>


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Li Zhang ◽  
Ke Gong ◽  
Maozeng Xu ◽  
Aixing Li ◽  
Yuanxiang Dong ◽  
...  

The identification and analysis of the spatiotemporal dynamic traffic patterns in citywide road networks constitute a crucial process for complex traffic management and control. However, city-scale and synchronal traffic data pose challenges for such kind of quantification, especially during peak hours. Traditional studies rely on data from road-based detectors or multiple communication systems, which are limited in not only access but also coverage. To avoid these limitations, we introduce real-time, traffic condition digital maps as our input. The digital maps keep spatiotemporal urban traffic information in nature and are open to access. Their pixel colors represent traffic conditions on corresponding road segments. We propose a stacked convolutional autoencoder-based method to extract a low-dimension feature vector for each input. We compute and analyze the distances between vectors. The statistical results show different traffic patterns during given periods. With the actual data of Chongqing city, we compare the feature extraction performance between our proposed method and histogram. The result shows our proposed method can extract spatiotemporal features better. For the same data set, there is little difference in the number distribution of red pixels found in the statistics result of the histogram, while differences do exist in the results of our proposed method. We find the most fluctuated morning is on Friday; the most fluctuated evening is on Tuesday; and the most stable evening is on Wednesday. The distance captured by our method can represent the evolution of different traffic conditions during the morning and evening peak hours. Our proposed method provides managers with assistance to sense the dynamics of citywide traffic conditions in quantity.


Author(s):  
M. Mashari ◽  
P. Pahlavani ◽  
A. Ebrahimi

Abstract. With the world’s growing population, the number of vehicles has increased, but the capacity of roads and transportation systems has not. The increasing traffic and the pollution that it causes has therefore become a problem all over the world. Wireless Sensor Networks that detect traffic and prevent its pernicious effects have attracted the attention of many. Fast information transfers, easy installation, less repair and maintenance, compression and lower costs make WSNs more common than other network solutions (Nellore and Hancke 2016). Since more traffic congestion wastes time and energy, it is crucial to develop and present approaches to more accurately detect traffic patterns. Clustering is one of the best data analysis methods used for detecting traffic patterns. The approach proposed by this study assumes that all vehicles are equipped with GPS, and that sensors establish connections with each other through radio communication equipment. In this case, clustering is used to gather important traffic information and create intelligent urban transportation systems (ITS) to reduce sensor energy consumption in vehicular sensor networks. The K-means method and the ANT Colony optimization algorithm were used to cluster sensors and investigate their impact on reducing sensor energy consumption. The results show that the K-means algorithm and the ANT Colony algorithm reduce vehicular sensor energy consumption by 41.7 and 76.8 percent, respectively. The investigations showed that the ANT Colony algorithm outperformed the K-means algorithm by 84.2%.


2013 ◽  
Vol 671-674 ◽  
pp. 2946-2950
Author(s):  
Gui Yan Jiang ◽  
Cui Liu Kong

The technologies of traffic parameters prediction provide future traffic information so that management measures for traffic congestion can be made timely and accurately based on the retrieved information. According to the shortcomings of traditional methods for predicting traffic parameters, a rolling time series method is proposed through improving the traditional time series methods. To test the performance of our proposed approach, the rolling time series method is compared with the traditional time series methods using measured traffic flow based on a part road network of a large urban area in China. The results show that the prediction effects by the rolling time series method developed in this study are better than traditional approaches.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 709 ◽  
Author(s):  
Zhao Huang ◽  
Jizhe Xia ◽  
Fan Li ◽  
Zhen Li ◽  
Qingquan Li

Road traffic congestion has a large impact on travel. The accurate prediction of traffic congestion has become a hot topic in intelligent transportation systems (ITS). Recently, a variety of traffic congestion prediction methods have been proposed. However, most approaches focus on floating car data, and the prediction accuracy is often unstable due to large fluctuations in floating speed. Targeting these challenges, we propose a method of traffic congestion prediction based on bus driving time (TCP-DT) using long short-term memory (LSTM) technology. Firstly, we collected a total of 66,228 bus driving records from 50 buses for 66 working days in Guangzhou, China. Secondly, the actual and standard bus driving times were calculated by processing the buses’ GPS trajectories and bus station data. Congestion time is defined as the interval between actual and standard driving time. Thirdly, congestion time prediction based on LSTM (T-LSTM) was adopted to predict future bus congestion times. Finally, the congestion index and classification (CI-C) model was used to calculate the congestion indices and classify the level of congestion into five categories according to three classification methods. Our experimental results show that the T-LSTM model can effectively predict the congestion time of six road sections at different time periods, and the average mean absolute percentage error ( M A P E ¯ ) and root mean square error ( R M S E ¯ ) of prediction are 11.25% and 14.91 in the morning peak, and 12.3% and 14.57 in the evening peak, respectively. The TCP-DT method can effectively predict traffic congestion status and provide a driving route with the least congestion time for vehicles.


Author(s):  
Rajesh Kumar Gupta ◽  
L. N. Padhy ◽  
Sanjay Kumar Padhi

Traffic congestion on road networks is one of the most significant problems that is faced in almost all urban areas. Driving under traffic congestion compels frequent idling, acceleration, and braking, which increase energy consumption and wear and tear on vehicles. By efficiently maneuvering vehicles, traffic flow can be improved. An Adaptive Cruise Control (ACC) system in a car automatically detects its leading vehicle and adjusts the headway by using both the throttle and the brake. Conventional ACC systems are not suitable in congested traffic conditions due to their response delay.  For this purpose, development of smart technologies that contribute to improved traffic flow, throughput and safety is needed. In today’s traffic, to achieve the safe inter-vehicle distance, improve safety, avoid congestion and the limited human perception of traffic conditions and human reaction characteristics constrains should be analyzed. In addition, erroneous human driving conditions may generate shockwaves in addition which causes traffic flow instabilities. In this paper to achieve inter-vehicle distance and improved throughput, we consider Cooperative Adaptive Cruise Control (CACC) system. CACC is then implemented in Smart Driving System. For better Performance, wireless communication is used to exchange Information of individual vehicle. By introducing vehicle to vehicle (V2V) communication and vehicle to roadside infrastructure (V2R) communications, the vehicle gets information not only from its previous and following vehicle but also from the vehicles in front of the previous Vehicle and following vehicle. This enables a vehicle to follow its predecessor at a closer distance under tighter control.


Author(s):  
Taku Wakui ◽  
Takao Kondo ◽  
Fumio Teraoka

AbstractThis paper proposes a general-purpose anomaly detection mechanism for Internet backbone traffic named GAMPAL (General-purpose Anomaly detection Mechanism using Prefix Aggregate without Labeled data). GAMPAL does not require labeled data to achieve general-purpose anomaly detection. For scalability to the number of entries in the BGP RIB (Border Gateway Protocol Routing Information Base), GAMPAL introduces prefix aggregate. The BGP RIB entries are classified into prefix aggregates, each of which is identified with the first three AS (Autonomous System) numbers in the AS_PATH attribute. GAMPAL establishes a prediction model for traffic sizes based on past traffic sizes. It adopts a LSTM-RNN (Long Short-Term Memory Recurrent Neural Network) model that focuses on the periodicity of the Internet traffic patterns at a weekly scale. The validity of GAMPAL is evaluated using real traffic information, BGP RIBs exported from the WIDE backbone network (AS2500), a nationwide backbone network for research and educational organizations in Japan, and the dataset of an ISP (Internet Service Provider) in Spain. As a result, GAMPAL successfully detects anomalies such as increased traffic due to an event, DDoS (Distributed Denial of Service) attacks targeted at a stub organization, a connection failure, an SSH (Secure Shell) scan attack, and anomaly spam.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Mario Muñoz-Organero ◽  
Ramona Ruiz-Blázquez

The automatic detection of road related information using data from sensors while driving has many potential applications such as traffic congestion detection or automatic routable map generation. This paper focuses on the automatic detection of road elements based on GPS data from on-vehicle systems. A new algorithm is developed that uses the total variation distance instead of the statistical moments to improve the classification accuracy. The algorithm is validated for detecting traffic lights, roundabouts, and street-crossings in a real scenario and the obtained accuracy (0.75) improves the best results using previous approaches based on statistical moments based features (0.71). Each road element to be detected is characterized as a vector of speeds measured when a driver goes through it. We first eliminate the speed samples in congested traffic conditions which are not comparable with clear traffic conditions and would contaminate the dataset. Then, we calculate the probability mass function for the speed (in 1 m/s intervals) at each point. The total variation distance is then used to find the similarity among different points of interest (which can contain a similar road element or a different one). Finally, a k-NN approach is used for assigning a class to each unlabelled element.


Sign in / Sign up

Export Citation Format

Share Document