scholarly journals Thermal properties, curing characteristics and water absorption of soybean oil-based thermoset

2011 ◽  
Vol 5 (6) ◽  
pp. 480-492 ◽  
Author(s):  
S. G. Tan ◽  
W. S. Chow
2020 ◽  
Vol 138 (13) ◽  
pp. 50131
Author(s):  
Xuan‐Yu He ◽  
Ting Wang ◽  
Zhong‐Cheng Pan ◽  
Abdul Qadeer Dayo ◽  
Jun Wang ◽  
...  

2018 ◽  
Vol 775 ◽  
pp. 26-31
Author(s):  
Sukantika Manatsittipan ◽  
Kamonthip Kuttiyawong ◽  
Kazuo Ito ◽  
Sunan Tiptipakorn

In this study, the biodegradability and thermal properties the composites of polybutylene succinate (PBS) and chitosan of different molecular weights (Mn = 104,105, and 106 Da) were prepared at chitosan contents of 0-10 wt%. After 10 days of microbial degradation, the results show that the amount of holes from degradation was increased with either decreasing Mn or increasing chitosan contents. However, the size of holes was increased with increasing Mn and chitosan contents. The results from Differential Scanning Calorimeter (DSC) present that the melting temperature (Tm) of PBS was decreased with increasing chitosan contents. Moreover, there was no significant difference between Tm of the composites with different Mn of chitosan. From the TGA thermograms, the decomposition temperature at 10% weight loss (Td10) was decreased with increasing chitosan contents. Moreover, the water absorption of PBS/chitosan composites was increased with increasing Mn and content of chitosan.


2020 ◽  
Vol 1015 ◽  
pp. 3-8
Author(s):  
Nuchnapa Tangboriboon ◽  
Samit Niyasom

At present, waste generation is fast-growing around the world due to the increasing of population. Therefore, recycling end-of life materials for sustainable and cleaner production is becoming a major target worldwide. The recycling waste materials is trend toward for many industries to reduce both the consumption of natural resources and the cost of products while protecting the environment from the harmful effects of waste materials. Adding water hyacinth fiber, banana fiber and eggshell powder can increase physical-mechanical-thermal properties of concrete. Concrete with/without adding 0, 0.02 and 0.05 wt% bio-filler via hydration reaction affects to good physical-mechanical-thermal properties. Especially adding 0.05 wt% eggshell powder into concrete has the highest compressive strength (22.08 ± 0.66 MPa) and lowest water absorption (1.62 ± 0.16 %) better than those of concrete without adding bio-filler. Furthermore, adding 0.05 wt% water hyacinth fiber affects to obtain the highest tensile strength equal to 187.63 ± 28.45 MPa. The obtained concrete added bio-filler samples have potential to be used as a good insulation material and building material due to low density, low water absorption, low price, good mechanical and thermal insulation.


2017 ◽  
Vol 751 ◽  
pp. 521-526 ◽  
Author(s):  
Jiraphorn Mahawan ◽  
Somchai Maneewan ◽  
Tanapon Patanin ◽  
Atthakorn Thongtha

This research concentrates to the effect of changing sand proportion on the physical, mechanical and thermal properties of building wall materials (Cellular lightweight concrete). The density, water absorption and compressive strength of the 7.0 cm x 7.0 cm x 7.0 cm concrete sample were studied. It was found that there are an increase of density and a reduction of water absorption with an increase of sand content. The higher compressive strength can be confirmed by higher density and lower water absorption. The physical and mechanical properties of lightweight concrete conditions conformed to the Thai Industrial Standard 2601-2013. The phases of CaCO3 and calcium silicate hydrate (C-S-H) in the material indicate an important factor in thermal insulating performance.


2018 ◽  
Vol 32 (8) ◽  
pp. 1056-1067 ◽  
Author(s):  
Matheus Poletto

In this study, composites with interesting mechanical and thermal properties were prepared using chemically modified vegetable oil as coupling agent in wood-fibers-reinforced recycled polypropylene. Soybean oil was reacted with maleic anhydride to produce maleated soybean oil (MASO). The mechanical, thermal, and morphological properties of the composite were evaluated. The usage of MASO as a coupling agent clearly improved the interfacial adhesion between wood fibers and the polypropylene matrix and increased the mechanical and thermal properties evaluated. Based on the obtained results, it is concluded that MASO can act as an alternative source of coupling agent dispensing with the addition of petroleum-based compatibilizers to improve the mechanical and thermal properties of composites reinforced with natural fibers.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 336 ◽  
Author(s):  
Sylwia Członka ◽  
Anna Strąkowska ◽  
Krzysztof Strzelec ◽  
Agnieszka Adamus-Włodarczyk ◽  
Agnė Kairytė ◽  
...  

Rigid polyurethane foams (RPUFs) were successfully modified with different weight ratios (0.5 wt%, 1.5 wt% and 5 wt%) of APIB-POSS and AEAPIB-POSS. The resulting foams were evaluated by their processing parameters, morphology (Scanning Electron Microscopy analysis, SEM), mechanical properties (compressive test, three-point bending test and impact strength), viscoelastic behavior (Dynamic Mechanical Analysis, DMA), thermal properties (Thermogravimetric Analysis, TGA, and thermal conductivity) and application properties (contact angle, water absorption and dimensional analysis). The results showed that the morphology of modified foams is significantly affected by the type of the filler and filler content, which resulted in inhomogeneous, irregular, large cell shapes and further affected the physical and mechanical properties of resulting materials. RPUFs modified with APIB-POSS represent better mechanical and thermal properties compared to the RPUFs modified with AEAPIB-POSS. The results showed that the best results were obtained for RPUFs modified with 0.5 wt% of APIB-POSS. For example, in comparison with unfilled foam, compositions modified with 0.5 wt% of APIB-POSS provide greater compression strength, better flexural strength and lower water absorption.


Sign in / Sign up

Export Citation Format

Share Document