scholarly journals The effect of different processing, injection molding (IM) and fused deposition modeling (FDM), on the environmental stress cracking (ESC) behavior of filled and unfilled polycarbonate (PC)

2021 ◽  
Vol 15 (3) ◽  
pp. 194-202
Author(s):  
M. Z. Huang ◽  
J. Nomai ◽  
A. K. Schlarb
2021 ◽  
Vol 13 (4) ◽  
pp. 1875
Author(s):  
Emmanuel Ugo Enemuoh ◽  
Venkata Gireesh Menta ◽  
Abdulaziz Abutunis ◽  
Sean O’Brien ◽  
Labiba Imtiaz Kaya ◽  
...  

There is limited knowledge about energy and carbon emission performance comparison between additive fused deposition modeling (FDM) and consolidation plastic injection molding (PIM) forming techniques, despite their recent high industrial applications such as tools and fixtures. In this study, developed empirical models focus on the production phase of the polylactic acid (PLA) thermoplastic polyester life cycle while using FDM and PIM processes to produce American Society for Testing and Materials (ASTM) D638 Type IV dog bone samples to compare their energy consumption and eco-impact. It was established that energy consumption by the FDM layer creation phase dominated the filament extrusion and PLA pellet production phases, with, overwhelmingly, 99% of the total energy consumption in the three production phases combined. During FDM PLA production, about 95.5% of energy consumption was seen during actual FDM part building. This means that the FDM process parameters such as infill percentage, layer thickness, and printing speed can be optimized to significantly improve the energy consumption of the FDM process. Furthermore, plastic injection molding consumed about 38.2% less energy and produced less carbon emissions per one kilogram of PLA formed parts compared to the FDM process. The developed functional unit measurement models can be employed in setting sustainable manufacturing goals for PLA production.


2014 ◽  
Vol 607 ◽  
pp. 65-69 ◽  
Author(s):  
M. Ibrahim ◽  
N.S. Badrishah ◽  
Nasuha Sa'ude ◽  
Mohd Halim Irwan Ibrahim

This paper presents the development of a new Wood Plastic Composite (WPC) material for Fused Deposition Modeling (FDM) feedstocks. In this study, a biodegradable polymer matrix (POLYACTIDE, PLA) was mixed with natural wood flour (WF) by Brabender mixer, and the samples produced by injection molding machine. The effect of wood was investigated as a filler material in composite FDM feedstock and the detailed formulations of compounding ratio by weight percentage. Based on results obtained, it was found that, compounding ratio of PLA80%:WF20% has a goods result on the tensile strength and PLA60% : WF40% gave a higher value of flexural strength. An increment of 20% to 40% WF filler affected the flexural strength, and hardness results. The highly filled WF content in PLA composites increases the mechanical properties of PMC material through the injection molding process. The potential of development of a sustainable composite material will be explored as the FDM feedstocks in the rapid prototyping process.


Author(s):  
Ruchi Karania ◽  
David Kazmer

Plastic components are vital components of many engineered products, frequently representing 20–40% of the product value. While injection molding is the most common process for economically producing complex designs in large quantities, a large initial monetary investment is required to develop appropriate tooling. Accordingly, injection molding may not be appropriate for applications that are not guaranteed to recoup the initial costs. This paper extends previous work [1] with component cost and lead-time models developed from extensive industry data. The application is an electrical enclosure consisting of two parts produced by a variety of low to high volume manufacturing processes including CNC machining, fused deposition modeling, selective laser sintering, vacuum casting, direct fabrication, and injection molding with soft prototype and production tooling. The viability of each process is compared for production quantities of one hundred, one thousand, and ten thousand. The results indicate that the average cost per enclosure assembly is highly sensitive to the production quantity, varying in range from US$0.35 per enclosure for ten thousand assemblies produced via injection molding to US$49.30 per enclosure for one hundred assemblies produced via fused deposition modeling. The results indicate the cost and lead time advantages of the alternative processes; a flow chart is provided to assist process selection in engineering design.


2019 ◽  
Vol 176 ◽  
pp. 107341 ◽  
Author(s):  
Makara Lay ◽  
Nuur Laila Najwa Thajudin ◽  
Zuratul Ain Abdul Hamid ◽  
Arjulizan Rusli ◽  
Muhammad Khalil Abdullah ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 873 ◽  
Author(s):  
Frederik Kotz ◽  
Markus Mader ◽  
Nils Dellen ◽  
Patrick Risch ◽  
Andrea Kick ◽  
...  

Polymethylmethacrylate (PMMA) is one of the most important thermoplastic materials and is a widely used material in microfluidics. However, PMMA is usually structured using industrial scale replication processes, such as hot embossing or injection molding, not compatible with rapid prototyping. In this work, we demonstrate that microfluidic chips made from PMMA can be 3D printed using fused deposition modeling (FDM). We demonstrate that using FDM microfluidic chips with a minimum channel cross-section of ~300 µm can be printed and a variety of different channel geometries and mixer structures are shown. The optical transparency of the chips is shown to be significantly enhanced by printing onto commercial PMMA substrates. The use of such commercial PMMA substrates also enables the integration of PMMA microstructures into the printed chips, by first generating a microstructure on the PMMA substrates, and subsequently printing the PMMA chip around the microstructure. We further demonstrate that protein patterns can be generated within previously printed microfluidic chips by employing a method of photobleaching. The FDM printing of microfluidic chips in PMMA allows the use of one of microfluidics’ most used industrial materials on the laboratory scale and thus significantly simplifies the transfer from results gained in the lab to an industrial product.


2018 ◽  
Vol 5 (4) ◽  
pp. 319-327 ◽  
Author(s):  
Haroutioun Askanian ◽  
Daniel Muranaka de Lima ◽  
Sophie Commereuc ◽  
Vincent Verney

2016 ◽  
Vol 706 ◽  
pp. 63-67 ◽  
Author(s):  
Pritish Shubham ◽  
Arnab Sikidar ◽  
Teg Chand

3D Printed ABS polymer samples were investigated for understanding the effect of layer thickness on the various mechanical properties of the component. Standard samples with varying layer thickness were prepared by 3D printing machine which works on the principle of Fused Deposition modeling (FDM) method and compared with sample prepared by standard injection molding method. Results show that tensile strength (36 MPa), impact strength (103.6 J/m) and hardness (R107) were highest for the samples made by injection molding method. Furthermore, among 3D printed samples, properties were better with smaller layer thickness. With increase in layer thickness, there was negative effect on mechanical properties as tensile strength, impact strength and hardness decreased. Exception with hardness of 3D printed ABS samples was found; for largest layer thickness hardness further increased instead of decreasing.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


Sign in / Sign up

Export Citation Format

Share Document