scholarly journals Pollen Germination of Rhizoma Peanut cv. Florigraze1

1992 ◽  
Vol 19 (2) ◽  
pp. 105-107 ◽  
Author(s):  
W. L. Niles ◽  
K. H. Quesenberry

Abstract Assessing pollen germination is fundamental to investigating infertility in plants. A potential cause of poor seed production in Florigraze (Arachis glabrata Benth.), rhizomatous peanut, was investigated by incubating pollen on in vitro germination media. The optimum sucrose and boron concentrations for pollen germination was delineated in a series of factorial experiments. Pollen germinability was assessed four times during the growing season. Flowers were collected at 2 h intervals spanning 30 h of development from bud to wilted flower. The optimum sucrose concentration was 100 g kg-1 but there were no differences in germination for B concentrations between 50 and 1,000 mg kg-1. Up to 78% pollen germination was obtained in a solution consisting of 100 g kg-1 sucrose, 100 mg kg-1 H3BO3, 250 mg kg-1 Ca(NO3)2·4H2O, 200 mg kg-1 MgSO4·7H2O and 100 mg kg-1 KNO3 in deionized water. Repeatable estimates of germinability were obtained in incubations of less than 30 min at 35 C. Florigraze pollen collected from developing buds as early as 2200 h the night before anthesis germinated in vitro. Peak germination extended from 2400 h to 1200 h the morning of anthesis. Under cool, dry conditions, the pollen collected 2 d after anthesis remained germinable. These results suggested poor pollen germinability was not the basis of low seed production in rhizomatous peanut. Pollen with high in vitro germination can dependably be collected from Florigraze flowers throughout the growing season during the first 6 h following anthesis, usually between sunrise to noon.

1989 ◽  
Vol 37 (5) ◽  
pp. 429 ◽  
Author(s):  
BM Potts ◽  
JB Marsden-Smedley

The effect of boric acid (0-450 ppm) and sucrose (0-40%) on pollen germination and pollen tube growth in Eucalyptus globulus, E. morrisbyi, E. ovata and E. tirnigera was examined in vitro. Over the con- centrations tested, sucrose had by far the largest effect upon both pollen germination and tube lengths. The optimum sucrose concentration for pollen germination (30%) and pollen tube growth (20%) differed markedly with very little (<lo%) germination occurring in the absence of sucrose. The interaction of sucrose and boric acid was significant. However, in general both pollen germination and pollen tube growth were increased by the addition of up to 100 ppm boric acid, but above this level the response plateauxed. The four species differed significantly in their pattern of response to both boric acid and sucrose and the predicted optima derived from analysis of response surfaces differed between species. The predicted sucrose concentration for optimal germination and growth of E. urnigera pollen was consistently less than the other species and in terms of the optimal level of boric acid for pollen tube growth species can be ranked in the order E. globulus > E. ovata > E. morrisbyi = E. urnigera. Pollen germination and tube growth of all four species on a medium comprising 20% sucrose and 200 ppm boric acid would not differ significantly from the observed maximum response of each species and this could suffice as a generalised medium. However, if only percentage germination is to be assessed 30% sucrose would be preferable. It is argued that subtle interspecific differences in optimal in vitro con- ditions for pollen germination and pollen tube growth are likely to reflect differences in pollen physiology which in vivo may have important implications for the success of hybridisation where pollen competition occurs.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 102 ◽  
Author(s):  
Seif Fragallah ◽  
Sizu Lin ◽  
Nuo Li ◽  
Elly Ligate ◽  
Yu Chen

In vitro pollen germination provides a novel approach and strategy to accelerate genetic improvement of tree breeding. Studies about pollen germination and tube growth of Chinese fir are limited. Therefore, this study aimed to investigate the effects of sucrose, boric acid, pH, and time of incubation on pollen germination and tube growth. Pollen from 9 clones were selected. In vitro germination was performed in basic media as control, and in different concentrations of sucrose (0, 10 and 15%), boric acid (0.01, 0.1 and 0.2%), and pH levels (4.5, 5 and 7). Pollen germination rates and tube growth were recorded periodically at 1, 12, 24, and 48 h. The results showed that sucrose imposes significant effects on pollen germination and tube growth. The effects are most obvious at concentration of 15%. Boric acid significantly promoted germination and tube growth. The promotion was most notable in lower concentration of 0.01%. The media adjusted to pH 7.0 boosted the germination and pollen tube growth. The optimum time of incubation was 24 and 48 h for pollen germination and tube growth, respectively. Sucrose, pH, and time of incubation were positively correlated, whereas boric acid negatively correlated with pollen germination and tube growth. This study provided experimental evidences for selecting viable pollens for Chinese fir breeding.


2007 ◽  
Vol 21 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Ian C. Burke ◽  
John W. Wilcut ◽  
Nina S. Allen

A high proportion of viable pollen grains must germinate to study the physiology of pollen growth to reduce the confounding effects of environmental influences on pollen germination. The objectives of this study were to evaluate the nuclear state and develop a suitable medium and culture method for in vitro germination of johnsongrass pollen. Johnsongrass pollen was trinucleate, and in vitro tests for pollen viability using Alexander's stain and a fluorochromatic reaction method (FCR) indicated johnsongrass pollen was viable (92.6 to 98.4%). A factorial treatment arrangement of four concentrations of sucrose, two concentrations of boric acid, and two concentrations of calcium nitrate were used to determine the optimum pollen-germination medium composition in suspension culture, agar culture, and cellophane membrane culture. Germination was highest in a suspension culture with a medium containing 0.3 M sucrose, 2.4 mM boric acid, and 3 mM calcium nitrate. Pollen germination using this medium was 78.9% when anthers were harvested just before anthesis.


HortScience ◽  
2004 ◽  
Vol 39 (2) ◽  
pp. 365-367 ◽  
Author(s):  
Zhanao Deng ◽  
Brent K. Harbaugh

The sporadic nature of inflorescence production and flower protogyny in caladium (Caladium ×hortulanum Birdsey) makes it desirable to store pollen and to rapidly assess its viability for cross-pollinations in breeding programs. This study was conducted to develop a procedure to determine caladium pollen viability and to use that procedure to evaluate the effect of short-term storage conditions on pollen viability. The sucrose level in the culture medium was found to have a significant impact on the in vitro germination of caladium pollen; a concentration of 6.8% was determined to be optimal for pollen germination. Caladium pollen lost viability within 1 day under room (24 °C) or freezing (-20 °C) temperatures, but could be stored at 4 °C for 2 to 4 days. Pollen stored at 4 °C produced successful pollinations. Data obtained from large-scale greenhouse pollinations supported use of this in vitro germination assay as a convenient way to evaluate caladium pollen viability (and fertility).


HortScience ◽  
2011 ◽  
Vol 46 (4) ◽  
pp. 571-576 ◽  
Author(s):  
Patrick J. Conner

Storage of pollen from 1 year to the next is often needed to enable desired crosses to be made in a pecan [Carya illinoinensis (Wangenh.) K. Koch] breeding program. Stored pollen is usually tested for viability through the use of in vitro germination tests. An in vitro germination testing system was developed for this purpose using cellophane booklets to provide a solid support for the pollen grains. Optimized germination media contained 5% sucrose, 20% polyethylene glycol 8000, 0.05% Ca(NO3)2, 0.025% H3BO3, and 10 mm 2-(N-morpholino)ethanesulfonic acid pH 6.0. Pollen should be rehydrated for 2 to 4 h in a humidified chamber before germination testing. A germination time of 4 to 24 h produces similar final germination percentages. Testing of pollen samples stored at –80 °C indicates that pecan pollen can be stored for at least 8 years without a decrease in viability. Chemical names used: polyethylene glycol (PEG); 2-(N-morpholino)ethanesulfonic acid (MES).


2017 ◽  
Vol 32 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Natalia Georgieva ◽  
Ivelina Nikolova ◽  
Valentin Kosev ◽  
Yordanka Naydenova

The objective of this study was to evaluate the influence of two organic nanofertilizers, Lithovit and Nagro, on in vitro germination, pollen tube elongation and pollen grain viability of Pisum sativum L cv. Pleven 4. The effect of their application was high and exceeded data for the untreated control (44.2 and 47.23 % regarding pollen germination and pollen tube elongation, respectively), as well as the effect of the control organic algal fertilizer Biofa (17.5 and 27.9 %, respectively). Pollen grains were inoculated in four culture media. A medium containing 15% sucrose and 1% agar had the most stimulating impact on pea pollen grains. Pollen viability, evaluated by staining with 1% carmine, was within limits of 74.72-87.97%. The highest viability of pollen grains was demonstrated after the application of Nagro organic nano-fertlizer.


2013 ◽  
Vol 35 (4) ◽  
pp. 1116-1126 ◽  
Author(s):  
Taliane Leila Soares ◽  
Onildo Nunes de Jesus ◽  
Janay Almeida dos Santos-Serejo ◽  
Eder Jorge de Oliveira

The use of Passiflora species for ornamental purposes has been recently developed, but little is known about pollen viability and the potential for crossing different species. The objective of this study was to evaluate the pollen viability of six Passiflora species collected from different physiological stages of development through in vitro germination and histochemical analysis using dyes. The pollen was collected in three stages (pre-anthesis, anthesis and post-anthesis). Three compositions of culture medium were used to evaluate the in vitro germination, and two dyes (2,3,5-triphenyltetrazolium chloride, or TTC, and Lugol's solution) were used for the histochemical analysis. The culture medium containing 0.03% Ca(NO3) 4H2O, 0.02% of Mg(SO4 ).7H2O, 0.01% of KNO3, 0,01% of H3BO3, 15% sucrose, and 0.8% agar, pH 7.0, showed a higher percentage of pollen grains germinated. Anthesis is the best time to collect pollen because it promotes high viability and germination. The Lugol's solution and TTC dye overestimated the viability of pollen, as all accessions showed high viability indices when compared with the results obtained in vitro.


2006 ◽  
Vol 54 (6) ◽  
pp. 553 ◽  
Author(s):  
T. Page ◽  
G. M. Moore ◽  
J. Will ◽  
G. M. Halloran

In vitro germination of freshly collected pollen was examined for five genotypes of Kunzea pomifera in liquid media with 5% and 10% sucrose. There were no significant differences in germination level between the different sucrose concentrations for each of the genotypes. Pollen-germination levels were significantly different among genotypes, ranging from 7 to 89%. Pollen of one genotype, stored for 12 months at 4°C and 10% relative humidity, was evaluated for germination at intervals over this period, and while significant differences in the levels of pollen germination after different storage periods were found, there was no correlation between germination percentage and storage time. Pollen of the K. pomifera accession Kmt1 stored under such conditions for 370 days was used in controlled pollination with accession Kmt2, resulting in 3.4 seeds per fruit, which was significantly fewer than the 17.2 seeds per fruit when using fresh pollen.


1985 ◽  
Vol 25 (3) ◽  
pp. 697 ◽  
Author(s):  
SJ Hill ◽  
DW Stephenson ◽  
BK Taylor

During 1978-80, flower emergence was recorded on 12 almond cultivars (Prunus dulcis) at Angle Vale, South Australia. Early flowering cultivars showed a larger annual variation in flowering period (2-3 weeks) than late flowering cultivars (0-2 weeks). In the same period, pollen production ranged from 30 to 122 mg per 100 flowers and in vitro pollen germination ranged from 76.1 to 99.0%. Pollen production and in vitro germination differed significantly between cultivars. Hand-pollination of Nonpareil with pollen from each of eight other cultivars resulted in significantly higher nut set than with open-pollinated or self-pollinated flowers. In contrast to Nonpareil, hand-pollination of Chellaston with pollen from five other cultivars resulted in significantly higher nut set compared with self-pollinated Chellaston but not compared with open-pollinated Chellaston. The potential increase in almond yield due to improved pollination is discussed.


1991 ◽  
Vol 69 (3) ◽  
pp. 685-688 ◽  
Author(s):  
Jeannie Gilbert ◽  
David Punter

Pollen of Arceuthobium americanum Nuttall ex Engelmann, a parasitic dwarf mistletoe of Pinus banksiana Lamb, in Manitoba, was germinated on media containing a range of concentrations of sucrose and salts. Highest germination levels occurred on 20% sucrose agar; addition of salts significantly depressed germination. Pollen germinability was below 5% at first but increased to near 50% as the season advanced. Mean germination differed significantly between flowers from 10 staminate plants but peaked at approximately the same times in association with increasing temperatures. Freezing night temperatures were followed by reduced germinability. The optimum temperature for in vitro pollen germination is close to 30 °C, whereas 40 °C impairs germination. Key words: parasitic angiosperms, microclimate, jack pine, reproductive biology.


Sign in / Sign up

Export Citation Format

Share Document