Influence of Planter Type and Seeding Rate on Yield and Disease Incidence in Peanut1

1994 ◽  
Vol 21 (1) ◽  
pp. 16-19 ◽  
Author(s):  
G. Wehtje ◽  
R. Weeks ◽  
M. West ◽  
L. Wells ◽  
P. Pace

Abstract Variability of peanut (Arachis hypogaea L.) seedling spacing, and yield were compared for a conventional and a vacuum-type planter in field studies conducted in 1991 and 1992. Vacuum-type planters have an improved seed metering system and are considered to be more precise. This added precision may serve to compensate for lower than normal seeding rates. Seeding rates evaluated decreased in a step-wise manner from the normal range of 123 to 101 kg/ha, to a minimum of 34 kg/ha. Spacing between individual seedlings was measured after emergence. The occurrence of tomato spotted wilt (TSWV) and southern stem rot were also determined. In 1991 and across all seeding rates, variability in seedling spacing (i.e. standard deviation) was identical between the two planters. In 1992, at 3 of the five seeding rates (34,56, and 101 kg/ha) standard deviation was less with the vacuum planter. In both years yield and disease occurrence was influenced only by seeding rate, and was independent of planter type. TSWV was inversely related to seeding rate, the opposite relationship occurred with southern stem rot. Maximum yield was achieved with a seeding rate of 101 kg/ha.

Plant Disease ◽  
2007 ◽  
Vol 91 (3) ◽  
pp. 273-278 ◽  
Author(s):  
L. E. Sconyers ◽  
T. B. Brenneman ◽  
K. L. Stevenson ◽  
B. G. Mullinix

Two field studies were conducted in 2000, 2001, and 2002 to determine the effects of row pattern (91.4-cm single or 20.3-cm twin) and seeding rate (single: 12.5, 17.4, or 22.6 seed m-1or twin: 6.2, 8.9, or 11.5 seed m-1) on peanut stem rot (Sclerotium rolfsii) development. The first study was conducted in a naturally infested field and relative efficacy of azoxystrobin (Abound 2.08 F, applied at a rate of 0.3 kg a.i. ha-1 at 60 and 90 days after planting [DAP]) also was evaluated. In this study, stem rot incidence was significantly greater (P < 0.05) in single rows planted at high seeding rates than in twin rows planted at any of the seeding rates. Row pattern did not affect azoxystrobin efficacy, and disease incidence was nearly half as much in twin rows treated with fungicide than incidence in single rows treated with fungicide. In the second field study, individual peanut plants in fumigated plots were inoculated once with S. rolfsii at 50, 70, or 90 DAP. Stem rot incidence at harvest was significantly greater on plants inoculated 50 DAP than plants inoculated 70 or 90 DAP. The incidence of spread to adjacent rows was higher in plots where plants were inoculated at 50 than at 90 DAP. Plants inoculated 90 DAP had less disease at harvest, but often developed more severe symptoms within the first week after inoculation compared with plants inoculated 50 or 70 DAP. Symptoms were more severe in single than in twin rows, and at the higher seeding rates. Data from these studies suggest that the physical spacing between plants is a critical factor in stem rot development both on individual plants and in plant populations.


2015 ◽  
Vol 16 (2) ◽  
pp. 63-70 ◽  
Author(s):  
A. K. Hagan ◽  
H. L. Campbell ◽  
K. L. Bowen ◽  
L. Wells

Release of peanut cultivars with enhanced tomato spotted wilt (TSW) resistance along with the decline in the incidence of this disease gives Alabama producers the option of earlier planting of irrigated peanuts to optimize farm operations and lower seeding rates to reduce input costs. Mid-April and mid-May plantings of the cvs. Florida-07, Georgia-06G, and Georgia Green at 6.6, 9.8, 13.1, and 19.7 seed/m were monitored over three years for TSW, stem rot, and leaf spot diseases as well as yield. Despite low TSW pressure and lack of a seeding rate response, disease incidence was higher in Georgia Green than Florida-07 and Georgia-06G with higher TSW indices noted for the April than May plantings of the former but not latter two cultivars. While not impacted by planting date, stem rot incidence, which was higher at 13.1 and 19.7 than 6.6 seed/m, was lower on Florida-07 than Georgia-06G and Georgia Green with the latter proving most susceptible. Although leaf spot intensity was not impacted by seeding rate, disease ratings were higher for May than April plantings, with Florida-07 and Georgia-06G having lower leaf spot ratings than Georgia Green in two of three study years. While planting date did not impact yield in two of three years, higher yields were recorded at 13.1 and 19.7 than 6.6 seed/m, with Florida-07 and Georgia-06G having higher yields than Georgia Green. Accepted for publication 16 February 2015. Published 20 April 2015.


2010 ◽  
Vol 37 (1) ◽  
pp. 83-91 ◽  
Author(s):  
W. D. Branch ◽  
S. M. Fletcher

Abstract Maximum (Max) and minimum (Min) peanut (Arachis hypogaea L.) input production tests were conducted for three consecutive years (2004–06) to evaluate agronomic performance and economic return among several runner and virginia genotypes. Mid-April planting dates were used each year. The Max tests included recommended production practices of seeding rate, fertilization, irrigation, and pesticides; whereas, the Min tests excluded irrigation, insecticides, and included only three fungicide sprays. Results showed variation among years, locations, and genotypes for TSWV and total disease incidence, pod yield, gross dollar value, and dollar value return above variable cost. The performance results also show the benefit to growers from agronomic and economic improvement with many of the newly released peanut cultivars in Georgia. Significant differences (P ≤ 0.05) among the peanut genotypes for tomato spotted wilt disease [caused by Tomato spotted wilt virus (TSWV)] where noted. The lowest TSWV incidence was noted for the cultivars Georgia-06G, Georgia Greener, Georgia-07W, Georgia-08V, Georgia-05E, Georgia-03L, Georgia-02C, Georgia-01R, and AP-3. Highest pod yields were found among Georgia-06G, Georgia Greener, Georgia-07W, Georgia-08V, Georgia-05E, and Georgia-01R. In general, the highest average dollar value return above variable cost was found in the Max test as compared to the Min test, and the highest average dollar value return above variable cost including seed cost was found with the runner-type cultivars Georgia-06G and Georgia Greener.


2003 ◽  
Vol 30 (2) ◽  
pp. 108-111 ◽  
Author(s):  
W. D. Branch ◽  
J. A. Baldwin ◽  
A. K. Culbreath

Abstract Tomato spotted wilt virus (TSWV) resistant, runner-type peanut (Arachis hypogaea L.) cultivars are the most important defense to control spotted wilt disease in southeast U.S. peanut production. The objective of this 3-yr (1999–01) study was to evaluate six TSWV-resistant, runner-type cultivars (Southern Runner, Florida MDR 98, C-99R, ViruGard, Georgia Green, and Georgia-OIR) at three different seeding rates (3, 5, and 7 seed/30.5 cm) in single conventional row patterns for possible genotype (GE) × seeding rate (SR) interaction at the Univ. of Georgia, Coastal Plain Experiment Station. The combined split-plot analyses of variance resulted in highly significant (P ≤ 0.01) GE × SR interaction, which indicates that not all six runner-type cultivars performed the same at each of these three seeding rates. A good example was the TSWV-resistant, runner-type peanut cultivar Georgia Green. It performed subpar at the below normal or lowest seeding rate; whereas at the highest seeding rate, Georgia Green and Georgia-OIR produced the highest pod yields and dollar value returns per hectare among all of these runner-type cultivars. TSWV disease incidence was also significantly lower for the TSWV-resistant Georgia Green cultivar at each of the two higher seeding rates compared to the lowest seeding rate.


1990 ◽  
Vol 17 (2) ◽  
pp. 65-67 ◽  
Author(s):  
T. B. Brenneman ◽  
W. D. Branch ◽  
A. S. Csinos

Abstract The susceptibility of 16 peanut (Arachis hypogaea L.) genotypes (eight Virginia and eight runner types) to southern stem rot (Sclerotium rolfsii Sacc.) was evaluated in field tests over three years. Mean disease incidence for all cultivars was 10.0, 15.4 and 16.4 disease loci per 12.2 m row and average yields were 3488, 2826 and 3569 kg/ha in 1986, 1987 and 1988, respectively. Disease incidence averaged 14.3 disease loci per 12.2 m of row for both market types. The mean yield for the eight Virginia types was 3287 kg/ha versus 3214 for the eight runner types. Culitvars within market types varied significantly in disease incidence and pod yield. Of the Virginia types, NC 6 and Florigiant were the most susceptible with NC 9, VA 81B and Early Bunch being the most resistant. Incidence of stem rot in runner cultivars was high except for Southern Runner and Langley which had about 50% less disease than the most susceptible entries. There was a highly significant correlation (P≤0.01) between yields and disease incidence all three years. Overall, Southern Runner had the lowest disease incidence and highest pod yield of any cultivar. Compared to Florunner, the current industry standard for runner types, Southern Runner had about 50% less disease and yields were 1346 kg/ha higher.


1989 ◽  
Vol 16 (1) ◽  
pp. 9-14 ◽  
Author(s):  
O. D. Smith ◽  
T. E. Boswell ◽  
W. J. Grichar ◽  
C. E. Simpson

Abstract Eight breeding lines, three parents, and the cultivar Florunner were compared under two levels of disease pressure induced by Sclerotium rolfsii Sacc., or Pythium myriotylum Drechs. at each of two locations for three years to ascertain the effectiveness of the host plant resistance to each pathogen. Varied disease pressures were created by application of fungicides and supplement of fungal inoculum. Mean Florunner pod yields varied more than 1000 kg/ha as a result of the S. rolfsii treatments but the yields of the resistant TxAG-3 were not affected. Disease incidence, as measured by frequency of S. rolfsii infection sites and diseased pods, was much higher for Florunner than TxAG-3. Breeding lines for which TxAG-3 was a parent sustained significant yield reductions. The disease incidence in these lines was higher than the resistant parent, equal or less than Tamnut 74, their other parent, and less than Florunner. The grades of TxAG-3 and its derivatives were lower than Florunner. Pod rot incidence differed for the P. myriotylum treatments but pod yields were not different. TxAG-3 and Toalson sustained less pod disease than Florunner and Tamnut 74. The percent of diseased pod tissue for one derivative of Toalson was lower than Toalson and TxAG-3, and that of one TxAG-3 derivative was equal to its best parent. The breeding lines varied in reaction to the two diseases and some lines showed considerable resistance to both organisms.


2011 ◽  
Vol 38 (2) ◽  
pp. 93-100 ◽  
Author(s):  
R. Scott Tubbs ◽  
John P. Beasley ◽  
Albert K. Culbreath ◽  
Robert C. Kemerait ◽  
Nathan B. Smith ◽  
...  

ABSTRACT Recent peanut cultivar releases are trending to a larger seed size, but have great resistance to tomato spotted wilt virus (TSWV). Larger-seeded cultivars cost more to plant than smaller at an equivalent population. Reduced seeding rates could save growers on seed costs and impede the spread of southern stem rot, but can reduce plant stands which can lower yields and increase TSWV incidence. Therefore, the objectives of this experiment were to compare seven peanut cultivars (Georgia Green, Georgia-06G, AT 3085RO, Florida-07, Tifguard, AP-3, and Georgia-03L) in single and twin row patterns at three seeding rates (17, 20, and 23 seed/m) on a sandy loam soil at Plains, GA for disease incidence, agronomic, and economic performance. Measured variables included yield and grade, plant height and stand, TSWV and southern stem rot incidence, and adjusted net revenue in 2008 and 2009. Twin rows outperformed single rows whenever differences occurred. The only factors consistently affected by reducing seeding rate were plant height and stand, both decreased at the lowest seeding rate. There was a trend toward lower yields (approximately 6% reduction) at the 17 seed/m rate in twin row pattern, although net returns were not diminished compared to the higher seeding rates since lower seed costs offset yield reductions. The cultivars Georgia-06G and Florida-07 had the highest yield and adjusted net revenue among the seven cultivars in both years. Tifguard and Georgia Green had lowest overall yields and would not be preferred cultivars in sandy loam soils. This study demonstrates that twin rows have higher yield, plant stands, and net revenue, plus reduced TSWV incidence than single row pattern, and a reduction in seeding rate to 17 seed/m can be made without serious risk of lost revenue. However, benefits of reducing seeding rate in twin rows were not as pronounced as they were for single rows, and exhibited a greater potential for lower yield. A grower planting in single rows would likely have the most to gain from planting fewer seed, especially under heavy southern stem rot pressure, but planting in twin rows would still be a preferred option over single rows.


2002 ◽  
Vol 29 (2) ◽  
pp. 79-84 ◽  
Author(s):  
J. H. Lyerly ◽  
H. T. Stalker ◽  
J. W. Moyer ◽  
K. Hoffman

Abstract Tomato spotted wilt virus (TSWV) is an important plant pathogen with a wide host range, including the domesticated peanut (Arachis hypogaea L.). After initial outbreaks on peanut during the 1980s, the virus has spread to all peanut-producing states in the U.S. TSWV is transmitted by several species of thrips which are difficult to control with insecticides; therefore, control of TSWV most likely will come from selecting resistant genotypes in breeding programs. Although moderate levels of resistance have been discovered in A. hypogaea, complete virus resistance has not been found. Several Arachis species have desirable genes for plant resistances and tolerate many disease and insect pests better than the cultivated species. The objectives of this study were to (a) evaluate TSWV disease incidence and severity in accessions of Arachis species, and (b) compare levels of TSWV resistance in diploid species to selected A. hypogaea genotypes. In this study, 46 diploid Arachis spp. accessions were evaluated in the greenhouse by artificial inoculation tests for resistance to TSWV. Nine Arachis accessions were observed with no disease symptoms when TSWV isolate 10 was used as opposed to A. hypogaea lines that ranged from moderately to highly susceptible. Additional testing with more virulent isolates identified A. diogoi accession GKP 10602 and A. correntina accession GKP 9530 as highly resistant to the virus. These two accessions are being used as parents in crossing programs to incorporate TSWV resistance genes into A. hypogaea.


Plant Disease ◽  
2005 ◽  
Vol 89 (8) ◽  
pp. 910-910 ◽  
Author(s):  
J. E. Woodward ◽  
T. B. Brenneman ◽  
R. C. Kemerait ◽  
A. K. Culbreath ◽  
J. R. Clark

Because of the importance of spotted wilt caused by Tomato spotted wilt virus (TSWV), most peanut (Arachis hypogaea L.) breeding programs in the southeastern United States are focusing on developing resistance to TSWV. Many of the cultivars with improved resistance to TSWV are late maturing, requiring 150 days to reach optimum maturity. This factor could greatly impact disease problems at harvest. During November of 2004, an unknown disease was observed on peanut cvs. Georgia 02-C and Hull in a commercial field in Appling County. Symptoms included wilting stems with water-soaked lesions and a dense, gray mold growing on infected tissues. Final disease incidence was less than 5%. For isolation, diseased tissue was surface sterilized by soaking in 0.5% sodium hypochlorite for 1 min, air dried, plated on potato dextrose agar (PDA), and incubated at 20°C. Botrytis cinerea Pers.:Fr., causal agent of Botrytis blight, was isolated from the margins of infected tissue. Mycelia were initially white but became gray after 72 h at which time tall, branched, septate conidiophores formed. Mature, unicellular, ellipsoid, hyaline conidia (8.9 × 10.4 μm) formed in botryose heads (1). Hard, black, irregular-shaped sclerotia formed after 2 weeks. Stems of greenhouse-grown peanut plants (cv. Georgia Green) were inoculated with PDA plugs colonized with either B. cinerea or B. allii Munn. Inoculations were made 3 cm below the last fully expanded leaf on wounded and nonwounded tissue. Noncolonized PDA plugs served as controls (n = 9). Plants were arranged in a dew chamber at 20°C in a randomized complete block design. Lesions and spore masses identical to those observed in the field appeared 3 to 5 days after being inoculated with B. cinerea. The B. allii inoculations caused only superficial lesions. After 5 days, mean lesion lengths for B. cinerea were 59 and 37 mm for wounded and nonwounded inoculations, respectively. B. cinerea was recovered from 100% of the symptomatic tissues. Botrytis blight is considered a late-season disease that occurs in cool, wet weather (3). Symptoms similar to those of Botrytis blight were observed on mature and over-mature peanut in Georgia and have been cited as “unpublished observations” (2); however, to our knowledge, this is the first report of the disease in Georgia. Although Botrytis blight is not considered a major peanut disease, it may become more prevalent at harvest as producers utilize late-maturing cultivars to manage spotted wilt. References: (1) H. L. Barnett and B. B. Hunter. Illustrated Guide of Imperfect Fungi. 4th ed. The American Phytopathological Society, St. Paul, MN, 1998. (2) K. H. Garren and C. Wilson. Peanut Diseases. Pages 262–333 in: The Peanut, the Unpredictable Legume. The National Fertilizer Assoc. Washington D.C. 1951. (3) D. M. Porter. Botrytis blight. Pages 10–11 in: Compendium of Peanut Diseases. 2nd ed. N. Kokalis-Burelle et al., eds. The American Phytopathological Society, St. Paul, MN. 1997.


2017 ◽  
Vol 44 (1) ◽  
pp. 19-25 ◽  
Author(s):  
J.M. Sarver ◽  
R.S. Tubbs ◽  
J.P. Beasley ◽  
A.K. Culbreath ◽  
T.L. Grey ◽  
...  

ABSTRACT Achieving and maintaining an adequate plant stand is a major priority when making planting and early season management decisions in peanut (Arachis hypogaea L.). Unpredictable and often extreme weather and high disease pressure in the southeastern United States can contribute to poor emergence and below-optimum plant stands. When plant stand is affected, replanting may be agronomically justified. This study was designed to determine i) the effect of plant stand on pod yield, market grade, and disease incidence in peanut seeded in a twin row pattern, (ii) if replanting is a viable option in a field with a below adequate stand and, iii) the best method for replanting peanut when an adequate stand is not achieved. Field trials were established at two locations in south Georgia in 2012 and 2013 to evaluate peanut production at four plant stands (7.4, 9.8, 12.3, and 14.8 plants/m [total plants/m across both units, or ‘twins' of the twin row pattern) and four replant methods (no replant, destroy the original stand and replant at a full seeding rate, add a reduced rate of seed to supplement the original stand with a single row between the original rows, and supplement with two additional rows with one between and the other next to the original rows). Replanting occurred when the stand had been established, an average of 24 days after initial planting. Pod yield at a stand of 12.3 plants/m was 6.6 and 5.8% greater than at a stand of 7.4 and 9.8 plants/m, respectively, with no benefit from increasing plant stand beyond 12.3 plants/m. Market grade was also maximized at 12.3 plants/m. Disease incidence was unaffected by plant stand. Yield was increased by supplementing an initial stand of 9.8 plants/m in both a single additional row and in two additional rows by 8.3 and 6.6%, respectively. A full replant of the original stand always resulted in lower yield, while grade was slightly increased in the full replant treatment. While an initial stand of 12.3 plants/m was needed in order to maintain yield potential, replanting via supplemental seed addition can recover lost yield at stands below this level.


Sign in / Sign up

Export Citation Format

Share Document