Timing of Aldicarb Applications to Control Meloidogyne arenaria in Peanut1

2001 ◽  
Vol 28 (2) ◽  
pp. 73-75 ◽  
Author(s):  
J. R. Rich ◽  
D. W. Gorbet

Abstract Four fieldtrialswere conductedin northwest Florida to determine the efficacyofaldicarb appliedat varyingtime intervals after planting on peanut (Arachis hypogaea) to manage the peanut root-knot nematode, Meloidogyne arenaria. Initial treatments with aldicarb (Temik 15G), fenamiphos (Nemacur 15G), and phorate (Thimet 15G) were made at planting of peanut cv. Southern Runner. The chemicals were applied as 20-cm-wide bands over the open seed furrow using a tractor-mounted Gandy applicator. Post-plant treatments were made with a Gandy applicator at time intervals from 28 to 104 dafter planting as 36-cm-wide bands over the row centers. Post-harvest M. arenaria population densities were affected little by any chemical treatment compared to the control. The efficacy of the chemical treatments was variable and averaged onlya 295-kglha yield increase for the single at-plant applications of aldicarb compared to the control. Allat-plant + post-plant aldicarb treatments increased yield over the control by an average of712 kg¡ ha. Results from these trials did not establish a single optimal time for post-plant application of aldicarb on peanut. Data from these tests, however, indicated that a post-plant aldicarb treatment can be applied latter than previously recommended in Florida.

1993 ◽  
Vol 20 (1) ◽  
pp. 66-71 ◽  
Author(s):  
N. A. Minton ◽  
T. B. Brenneman ◽  
K. Bondari ◽  
G. W. Harrison

Abstract The efficacy of fosthiazate, a new organophosphorus compound, against the peanut root-knot nematode (Meloidogyne arenaria (Neal) Chitwood), thrips (Frankliniella spp.), and southern stem rot (Sclerotium rolfsii Sacc.) in peanut (Arachis hypogaea L.) was studied for 2 years at Tifton, Georgia. Different rates and methods of applying granular and emulsifiable concentrate formulations of fosthiazate were compared with rates and methods of applying granular fenamiphos and aldicarb which were included as standard treatments. When compared with untreated controls, all treatments of all compounds increased peanut yield and reduced nematode galls on peanut roots, pods, and pegs and thrips damage to foliage significantly in both years. The treatments, however, varied in their effects on southern stem rot. Peanut yields from plots treated with equal rates of the granular and emulsifiable concentrate formulations of fosthiazate were similar. Yields of plots treated with fosthiazate at different rates compared favorably with those treated with comparable rates of fenamiphos and aldicarb. Fosthiazate increased peanut yield as much as 214% in 1990 and 64% in 1991, but yields varied with rates applied.


Genome ◽  
1996 ◽  
Vol 39 (5) ◽  
pp. 836-845 ◽  
Author(s):  
G. M. Garcia ◽  
H. T. Stalker ◽  
E. Shroeder ◽  
G. Kochert

Two dominant genes conditioning resistance to the root-knot nematode Meloidogyne arenaria were identified in a segregating F2 population derived from the cross of 4x (Arachis hypogaea × Arachis cardenasii)-GA 6 and PI 261942. Mae is proposed as the designation for the dominant gene restricting egg number and Mag is proposed as the designation for the dominant gene restricting galling. The high levels of resistance in GA 6 were introgressed from A. cardenasii and, therefore, a search to identify A. cardenasii specific RAPD markers that are tightly linked to these resistance genes was conducted utilizing bulked segregant analysis. One RAPD marker (Z3/265) was linked at 10 ± 2.5 (SE) and 14 ± 2.9 cM from Mag and Mae, respectively. The marker was mapped to linkage group 1 at 5 cM from Xuga.cr239 in the backcross map in an area where introgression from A. cardenasii had previously been reported. This fragment was cloned and used to generate a pair of primers that specifically amplified this locus (sequence characterized amplified region, SCAR) and as a RFLP probe. Their close linkage with the resistance genes will be useful in marker-based selection while transferring nematode resistance from introgression lines into elite breeding lines and cultivars. The Z3/265 marker associated with the genes Mae or Mag was not found in other highly resistant Arachis species (Arachis batizocoi or Arachis stenosperma), in progenies of interspecific crosses with A. cardenasii that were moderately resistant, or in the resistant A. hypogaea lines PI 259634 and PI 259572. These represent the first molecular markers linked with a resistant gene in peanut and the first report of two physiological responses to nematode attack associated with two genetic factors. Key words : peanut, Arachis hypogaea, Arachis cardenasii, Meloidogyne arenaria, RFLP, RAPD, SCAR, nematode resistance, bulk segregant analysis, introgression.


1972 ◽  
Vol 23 (4) ◽  
pp. 623
Author(s):  
EM Hutton ◽  
WT Williams ◽  
LB Beall

In each of two years the reactions of 36 lines of Phaseolus atropurpureus to the four root-knot nematodes Meloidogyne arenaria, M. hapla, M. incognita, and M. javanica were studied. Seven of the experimental lines were common to the two years. Two known susceptible species, Phaseolus lathyroides and Lycopersicon esculentum (tomato cv. Grosse Lisse), were used as controls. Four macroscopic and four microscopic reactions were recorded on each occasion, and the results analysed. Resistance to the four nematodes was present in all lines of P. atropurpureus. There was also evidence of differential resistance between lines; some showed increased resistance to all nematodes except M. hapla, and others showed both increased susceptibility to M. hapla and increased resistance to M. javanica. The severity of attack on thc controls was significantly less in the second ycar. Several explanations for this are advanced.


2007 ◽  
Vol 47 (5) ◽  
pp. 620 ◽  
Author(s):  
B. L. Blair ◽  
G. R. Stirling

Damage to sugarcane caused by root-knot nematode (Meloidogyne spp.) is well documented in infertile coarse-textured soils, but crop losses have never been assessed in the fine-textured soils on which more than 95% of Australia’s sugarcane is grown. The impact of nematodes in these more fertile soils was assessed by repeatedly applying nematicides (aldicarb and fenamiphos) to plant and ratoon crops in 16 fields, and measuring their effects on nematode populations, sugarcane growth and yield. In untreated plant crops, mid-season population densities of lesion nematode (Pratylenchus zeae), root-knot nematode (M. javanica), stunt nematode (Tylenchorhynchus annulatus), spiral nematode (Helicotylenchus dihystera) and stubby-root nematode (Paratrichodorus minor) averaged 1065, 214, 535, 217 and 103 nematodes/200 mL soil, respectively. Lower mean nematode population densities were recorded in the first ratoon, particularly for root-knot nematode. Nematicides reduced populations of lesion nematode by 66–99% in both plant and ratoon crops, but control of root-knot nematode was inconsistent, particularly in ratoons. Nematicide treatment had a greater impact on shoot and stalk length than on shoot and stalk number. The entire community of pest nematodes appeared to be contributing to lost productivity, but stalk length and final yield responses correlated most consistently with the number of lesion nematodes controlled. Fine roots in nematicide-treated plots were healthier and more numerous than in untreated plots, and this was indicative of the reduced impact of lesion nematode. Yield responses averaged 15.3% in plant crops and 11.6% in ratoons, indicating that nematodes are subtle but significant pests of sugarcane in fine-textured soils. On the basis of these results, plant-parasitic nematodes are conservatively estimated to cost the Australian sugar industry about AU$82 million/annum.


2012 ◽  
Vol 13 (1) ◽  
pp. 16
Author(s):  
Joao Augusto ◽  
Timothy B. Brenneman

Fungicide penetration of the peanut (Arachis hypogaea) canopy to target soilborne pathogens is difficult due to the dense foliage present when mid- to late-season applications are made. To assess the effect of application timing and volume on leaf spot and stem rot control as well as peanut yield, pyraclostrobin (0.21 kg a.i./ha) or chlorothalonil (1.26 kg a.i./ha), a systemic and a contact fungicide, respectively, were applied four times on cv. Georgia Green during the day (on unfolded leaves) or at night (on folded leaves) at 187, 243, or 355 liters/ha. Night application of pyraclostrobin, across spray volumes, gave the best stem rot control and pod yield increase. Pyraclostrobin applied during the day at higher spray volumes also slightly increased control of stem rot, apparently by improving canopy penetration. Neither application timing nor spray volume affected leaf spot control with pyraclostrobin. Higher spray volumes for the chlorothalonil applications tended to improve control of early and late leaf spot, possibly by increasing coverage of foliage and stems. Accepted for publication 10 January 2012. Published 20 April 2012.


2001 ◽  
Vol 26 (1) ◽  
pp. 93-94 ◽  
Author(s):  
ELVIRA M.R. PEDROSA ◽  
ROMERO M. MOURA

Even though resistance is the most promising tactic for root-knot nematode management on soybean (Glycine max), virulent biotypes may occur and be selected on specific resistant plant genotypes. In the present study, reproduction rate of Meloidogyne arenaria race 1 increased after four sequences of continuous culture of the parasite on resistant soybean genotypes.


Sign in / Sign up

Export Citation Format

Share Document