Reactions of lines of Phaseolus atropurpureus to four species of root-knot nematode

1972 ◽  
Vol 23 (4) ◽  
pp. 623
Author(s):  
EM Hutton ◽  
WT Williams ◽  
LB Beall

In each of two years the reactions of 36 lines of Phaseolus atropurpureus to the four root-knot nematodes Meloidogyne arenaria, M. hapla, M. incognita, and M. javanica were studied. Seven of the experimental lines were common to the two years. Two known susceptible species, Phaseolus lathyroides and Lycopersicon esculentum (tomato cv. Grosse Lisse), were used as controls. Four macroscopic and four microscopic reactions were recorded on each occasion, and the results analysed. Resistance to the four nematodes was present in all lines of P. atropurpureus. There was also evidence of differential resistance between lines; some showed increased resistance to all nematodes except M. hapla, and others showed both increased susceptibility to M. hapla and increased resistance to M. javanica. The severity of attack on thc controls was significantly less in the second ycar. Several explanations for this are advanced.

Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 527-527
Author(s):  
G. T. Church

The state of Florida is the largest producer of fresh market tomato (Lycopersicon esculentum L.) in the United States with 2003 yields of 634 million kg on 17,700 ha valued at 516 million dollars. Effective crop management is essential for production of vegetables in Florida because of the presence of intense pest pressure. The identification of the pests present is the first step in the development of a successful IPM (integrated pest management) program. Root-knot nematodes (Meloidogyne spp.) are common nematodes that parasitize vegetables in Florida and cause significant yield reductions when not properly managed. In 2003 field experiments, soil was collected from two research farms in Saint Lucie and Seminole counties in Florida. Galling caused by root-knot nematode was observed on tomato at both locations. Since females suitable for identification are difficult to obtain from field-grown roots, field soil was placed in pots in the greenhouse and planted with Lycopersicon esculentum cv. Rutgers. Standard morphological techniques, differential host tests, and isozyme phenotypes were used in nematode identification. Female root-knot nematodes were extracted from tomato roots and placed in extraction buffer (10% wt/vol sucrose, 2% vol/vol Triton X-100, 0.01% wt/vol bromophenol blue). The females were crushed, loaded on a polyacrylamide gel, and separated by electrophoresis using the PhastSystem (Amersham Biosciences, Piscataway, NJ). The activities of malate dehydrogenase and esterase enzymes were detected using standard techniques. Isozyme phenotypes consistent with Meloidogyne incognita (Kofoid and White) Chitwood and M. javanica (Treub) Chitwood as well as with the newly described M. floridensis Handoo (1) were observed at both locations. To our knowledge, this is the first report of M. floridensis naturally occurring on tomato in Florida. The identification and distribution of M. floridensis in vegetable production fields is important for disease management throughout the state since the host range is likely different from other Meloidogyne spp. Reference: (1) Z. A. Handoo et al. J. Nematol. 36:20, 2004.


Nematology ◽  
1999 ◽  
Vol 1 (3) ◽  
pp. 279-284 ◽  
Author(s):  
S. Alan Walters ◽  
Todd C. Wehner ◽  
Kenneth R. Barker

Abstract Ten cultigens were evaluated for resistance to Meloidogyne arenaria races 1 and 2, and M. javanica under greenhouse and field conditions. Resistance to M. arenaria races 1 and 2, and M. javanica was verified in Cucumis sativus var. hardwickii line LJ 90430 and to M. arenaria race 2 in C. sativus var. sativus Southern Pickler and Mincu in a greenhouse test. Another cultigen of C. sativus var. hardwickii (PI 215589) was found to be resistant to M. arenaria race 2 but not to other root-knot nematode species tested. LJ 90430 is the cultigen of choice to develop root-knot nematode resistant cucumbers, since it has multiple root-knot nematode resistance and is cross-compatible with cucumber. Greenhouse and field data were positively correlated (r = 0.74) over both years. Experiment repeatabilities were calculated from the cultigens infected with root-knot nematodes under both greenhouse and field conditions. Four environments (greenhouse and field over 2 years) were used in the analysis. Repeatabilities were high in all instances (ranging from 0.83-0.99) and indicated that the environment (field or greenhouse) was not an important factor in assessing root-knot nematode resistance for the cultigens evaluated. Resistenz von Gurkengegen Wurzelgallennematoden im Gewachshaus undim Freiland - Unter Gewachshausund Freilandbedingungen wurden zehn Cultigene auf ihre Resistenz gegen Meloidogyne arenaria Rassen 1 und 2 und gegen M. javanica gepruft. Bei Cucumis sativus var. hardwickii Linie LJ 90430 wurde im Gewachshausversuch Resistenz gegen M. arenaria Rassen 1 und 2 sowie gegen M. javanica nachgewiesen, und in C. sativus var. sativus "Southern Pickler" und "Mincu" Resistenz gegen M. arenaria Rasse 2. Cultigen C. sativus var. hardwickii (PI 215589) war resistent gegen M. arenaria Rasse 2 aber nicht gegen die anderen gepruften Arten von Wurzelgallennematoden. LJ 90430 ist das Cultigen der Wahl bei der Entwicklung von Gurken, die gegen Wurzelgallennematoden resistent sind, da es multiple Resistenzen gegen Wurzelgallennematoden besitzt und kreuzungsvertraglich mit Gurke ist. Die Ergebnisse der Gewachshaus- und Feldversuche waren uber beide Versuchsjahre hin positiv korreliert (r = 0,74). Ausgehend von den Cultigenen, die im Gewachshaus und im Freiland mit Wurzelgallennematoden infiziert waren, wurden die Wiederholbarkeiten der Versuche berechnet. Dabei wurden vier verschiedene Umweltbedingungen (Gewachshaus und Freiland uber zwei Jahre) verwendet. Die Wiederholbarkeiten waren in allen Fallen hoch (0,83-0,99) und zeigten an, dass die Umwelt (Freiland oder Gewachshaus) kein wichtiger Faktor bei der Bestimmung der Resistenz gegen Wurzelgallennematoden bei den gepruften Cultigenen war.


2018 ◽  
Vol 6 (26) ◽  
Author(s):  
Kazuki Sato ◽  
Yasuhiro Kadota ◽  
Pamela Gan ◽  
Takahiro Bino ◽  
Taketo Uehara ◽  
...  

Root-knot nematodes (Meloidogyne spp.) cause serious damage to many crops globally. We report the high-quality genome sequence of Meloidogyne arenaria genotype A2-O.


1986 ◽  
Vol 13 (2) ◽  
pp. 78-80 ◽  
Author(s):  
D. D. Baltensperger ◽  
G. M. Prine ◽  
R. A. Dunn

Abstract Peanut root-knot nematode (Meloidogyne arenaria race 1) is an important pest of cultivated peanuts (Arachis hypogaea L.). Experimental data do not exist, however, to indicate whether this nematode might be a potential pest of peanuts grown for forage production. Florigraze and Arbrook, two recently released cultivars of rhizoma peanut (Arachis glabrata Benth.) and P.I. 446898 (Arachis spp.) with perennial forage potential, were evaluated for their interaction with M. arenaria race 1, M. javanica, and M. incognita races I and III. Individual plants, grown in 150 cm3 ConetainersR, were inoculated with 3,000 eggs of one of the four Meloidogyne spp. populations. After three months gall and egg mass scores and soil-nematode counts were determined for each plant sample. A second long-term experiment evaluated Florigraze that was repeatedly inoculated with high levels of root-knot nematodes. Both rhizoma peanut cultivars were highly resistant to all root-knot nematodes tested; Florigraze appeared to be immune. P.I. 446898 was intermediate between the rhizoma peanuts and the susceptible alyceclover check. This is the first known report of such high levels of Meloidogyne arenaria resistance in Arachis spp. Further screending of A. hypogaea material can be justified based on these results and Vavilov's “Law of homologous series”. If no resistance is found in A. hypogaea, A. glabrata may provide a source of resistance that may be transferred to A. hypogea through hybridization.


1999 ◽  
Vol 29 (2) ◽  
pp. 42-45 ◽  
Author(s):  
Kazuyoshi CHUBACHI ◽  
Makoto FURUKAWA ◽  
Shigeaki FUKUDA ◽  
Senji TAKAHASHI ◽  
Shoji MATSUMURA ◽  
...  

2005 ◽  
Vol 95 (2) ◽  
pp. 158-165 ◽  
Author(s):  
A. Pegard ◽  
G. Brizzard ◽  
A. Fazari ◽  
O. Soucaze ◽  
P. Abad ◽  
...  

In the pepper Capsicum annuum CM334, which is used by breeders as a source of resistance to Phytophthora spp. and potyviruses, a resistance gene entirely suppresses reproduction of the root-knot nematode (Meloidogyne spp.). The current study compared the histological responses of this resistant line and a susceptible cultivar to infection with the three most damaging root-knot nematodes: M. arenaria, M. incognita, or M. javanica. Resistance of CM334 to root-knot nematodes was associated with unidentified factors that limited nematode penetration and with post-penetration biochemical responses, including the hypersensitive response, which apparently blocked nematode migration and thereby prevented juvenile development and reproduction. High-performance liquid chromatography analysis suggested that phenolic compounds, especially chlorogenic acid, may be involved in CM334 resistance. The response to infection in the resistant line varied with root-knot nematode species and was correlated with nematode behavior and pathogenicity in the susceptible cultivar: nematode species that quickly reached the vascular cylinder and initiated feeding sites in the susceptible cultivar were quickly recognized in CM334 and stopped in the epidermis or cortex. After comparing our data with those from other resistant pepper lines, we suggest that timing of the resistance response and the mechanism of resistance vary with plant genotype, resistance gene, and root-knot nematode species.


Nematology ◽  
2017 ◽  
Vol 19 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Israel L. Medina ◽  
Cesar B. Gomes ◽  
Valdir R. Correa ◽  
Vanessa S. Mattos ◽  
Philippe Castagnone-Sereno ◽  
...  

Root-knot nematodes (Meloidogyne spp.) significantly impact potato production worldwide and in Brazil they are considered one of the most important group of nematodes affecting potatoes. The objectives of this study were to survey Meloidogyne spp. associated with potatoes in Brazil, determine their genetic diversity and assess the aggressiveness of M. javanica on two susceptible potato cultivars. Fifty-seven root-knot nematode populations were identified using esterase phenotyping, including Meloidogyne javanica, M. incognita, M. arenaria and M. ethiopica. Overall, root-knot nematodes were present in ca 43% of sampled sites, in which M. javanica was the most prevalent species, and the phenotypes Est J3, J2a and J2 occurred in 91.2, 6.7 and 2.1% of the positive samples, respectively. Other species, such as M. incognita, M. arenaria and M. ethiopica, were found less frequently and occurred at rates of 6.4, 4.3 and 2.1% of the samples, respectively. Sometimes, M. javanica was found in mixtures with other root-knot nematodes in ca 10.6% of sites containing Meloidogyne. After confirming the identification of 17 isolates of M. javanica and one isolate each of M. incognita, M. arenaria and M. ethiopica by SCAR markers, the populations were used to infer their genetic diversity using RAPD markers. Results revealed low intraspecifc genetic diversity among isolates (13.9%) for M. javanica. Similarly, M. javanica sub-populations (J2a) clustered together (81% of bootstrap), indicating subtle variation from typical J3 populations. The aggressiveness of four populations of M. javanica from different Brazilian states on two susceptible potato cultivars was tested under glasshouse conditions. Results indicated differences in aggressiveness among these populations and showed that potato disease was proportional to nematode reproduction factor.


2001 ◽  
Vol 26 (1) ◽  
pp. 93-94 ◽  
Author(s):  
ELVIRA M.R. PEDROSA ◽  
ROMERO M. MOURA

Even though resistance is the most promising tactic for root-knot nematode management on soybean (Glycine max), virulent biotypes may occur and be selected on specific resistant plant genotypes. In the present study, reproduction rate of Meloidogyne arenaria race 1 increased after four sequences of continuous culture of the parasite on resistant soybean genotypes.


2001 ◽  
Vol 28 (2) ◽  
pp. 73-75 ◽  
Author(s):  
J. R. Rich ◽  
D. W. Gorbet

Abstract Four fieldtrialswere conductedin northwest Florida to determine the efficacyofaldicarb appliedat varyingtime intervals after planting on peanut (Arachis hypogaea) to manage the peanut root-knot nematode, Meloidogyne arenaria. Initial treatments with aldicarb (Temik 15G), fenamiphos (Nemacur 15G), and phorate (Thimet 15G) were made at planting of peanut cv. Southern Runner. The chemicals were applied as 20-cm-wide bands over the open seed furrow using a tractor-mounted Gandy applicator. Post-plant treatments were made with a Gandy applicator at time intervals from 28 to 104 dafter planting as 36-cm-wide bands over the row centers. Post-harvest M. arenaria population densities were affected little by any chemical treatment compared to the control. The efficacy of the chemical treatments was variable and averaged onlya 295-kglha yield increase for the single at-plant applications of aldicarb compared to the control. Allat-plant + post-plant aldicarb treatments increased yield over the control by an average of712 kg¡ ha. Results from these trials did not establish a single optimal time for post-plant application of aldicarb on peanut. Data from these tests, however, indicated that a post-plant aldicarb treatment can be applied latter than previously recommended in Florida.


Sign in / Sign up

Export Citation Format

Share Document