Interactive Effects of Fungicide, Application Timing, and Spray Volume on Peanut Diseases and Yield

2012 ◽  
Vol 13 (1) ◽  
pp. 16
Author(s):  
Joao Augusto ◽  
Timothy B. Brenneman

Fungicide penetration of the peanut (Arachis hypogaea) canopy to target soilborne pathogens is difficult due to the dense foliage present when mid- to late-season applications are made. To assess the effect of application timing and volume on leaf spot and stem rot control as well as peanut yield, pyraclostrobin (0.21 kg a.i./ha) or chlorothalonil (1.26 kg a.i./ha), a systemic and a contact fungicide, respectively, were applied four times on cv. Georgia Green during the day (on unfolded leaves) or at night (on folded leaves) at 187, 243, or 355 liters/ha. Night application of pyraclostrobin, across spray volumes, gave the best stem rot control and pod yield increase. Pyraclostrobin applied during the day at higher spray volumes also slightly increased control of stem rot, apparently by improving canopy penetration. Neither application timing nor spray volume affected leaf spot control with pyraclostrobin. Higher spray volumes for the chlorothalonil applications tended to improve control of early and late leaf spot, possibly by increasing coverage of foliage and stems. Accepted for publication 10 January 2012. Published 20 April 2012.

1995 ◽  
Vol 22 (2) ◽  
pp. 114-120 ◽  
Author(s):  
J. V. Altom ◽  
R. B. Westerman ◽  
D. S. Murray

Abstract Field experiments were conducted from 1991 to 1993 to evaluate eclipta, Eclipta prostrata L., control and peanut, Arachis hypogaea L., response to herbicide treatments. Fomesafen {5-[2-chloro-4-(trifluoro-methyl)phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide} applied at cracking was the only preemergence-applied herbicide which provided season-long control (>84%). Herbicides applied postemergence were more effective when the eclipta was less than 5 cm in height. The most consistent early postemergence treatments were bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazm-4(3H)-one 2,2-dioxide], and bentazon + acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid} + 2,4-DB [4-(2,4-dichloro-phenoxy)butanoic acid]. Various other early postemergence followed by late postemergence sequential treatments also were equally effective. Minor peanut injury was observed at the early season rating from several herbicides; however, all injury had disappeared by the late season rating. Eclipta control did not consistently improve peanut pod yield.


1990 ◽  
Vol 17 (2) ◽  
pp. 65-67 ◽  
Author(s):  
T. B. Brenneman ◽  
W. D. Branch ◽  
A. S. Csinos

Abstract The susceptibility of 16 peanut (Arachis hypogaea L.) genotypes (eight Virginia and eight runner types) to southern stem rot (Sclerotium rolfsii Sacc.) was evaluated in field tests over three years. Mean disease incidence for all cultivars was 10.0, 15.4 and 16.4 disease loci per 12.2 m row and average yields were 3488, 2826 and 3569 kg/ha in 1986, 1987 and 1988, respectively. Disease incidence averaged 14.3 disease loci per 12.2 m of row for both market types. The mean yield for the eight Virginia types was 3287 kg/ha versus 3214 for the eight runner types. Culitvars within market types varied significantly in disease incidence and pod yield. Of the Virginia types, NC 6 and Florigiant were the most susceptible with NC 9, VA 81B and Early Bunch being the most resistant. Incidence of stem rot in runner cultivars was high except for Southern Runner and Langley which had about 50% less disease than the most susceptible entries. There was a highly significant correlation (P≤0.01) between yields and disease incidence all three years. Overall, Southern Runner had the lowest disease incidence and highest pod yield of any cultivar. Compared to Florunner, the current industry standard for runner types, Southern Runner had about 50% less disease and yields were 1346 kg/ha higher.


1994 ◽  
Vol 21 (2) ◽  
pp. 134-138 ◽  
Author(s):  
T. B. Brenneman ◽  
H. R. Sumner ◽  
L. R. Chandler ◽  
J. M. Hammond ◽  
A. K. Culbreath

Abstract Propiconazole (Tilt®) was applied to Florunner peanut by injection into irrigation water (chemigation) or as a foliar spray. At rates of 0.12-0.25 kg/ha of propiconazole control of both Rhizoctonia limb rot (Rhizoctonia solani AG-4) and stem rot (Sclerotium rolfsii) was inconsistent. Chemigation resulted in the lowest incidence of stem rot, but the incidence of stem rot was only 26% less than the control. Yields from plots receiving chemigation were greater than expected based on disease ratings, indicating that some effects of the fungicide were not being evaluated. Where foliar sprays of chlorothalonil were applied for late leaf spot (Cercosporidium personatum), supplemental applications of propiconazole via chemigation improved leaf spot control. However, substituting chemigated propiconazole for foliar sprays of chlorothalonil consistently resulted in more severe leaf spot and, in one year, decreased yields. Propiconazole is most effective against leaf spot when applied as a foliar spray, whereas chemigation applications provide optimum efficacy against soilborne pathogens of peanut.


2017 ◽  
Vol 44 (2) ◽  
pp. 77-82 ◽  
Author(s):  
R. B. Sorensen ◽  
R.C. Nuti ◽  
C.C. Holbrook ◽  
C.Y. Chen

ABSTRACT Peanut (Arachis hypogaea L.) peg strength and associated pod yield and digging loss were documented for nine cultivars and two breeding genotypes across three harvest dates (early, mid, and late season) at two Southwest Georgia locations during 2010 and 2011. Cultivars selected were Georgia Green, Georgia Greener, Georgia-02C, Georgia-06G, Georgia-07W, Georgia-09B, Georgia-10T, Florida-07, Tifguard, and advanced breeding lines EXP27-1516 and TifGP-2. Prior to digging, a minimum of three peanut plants from each plot were selected and excess stems and leaves were removed with scissors leaving individual peanut pegs and pods with about 5-cm of stem. Each peanut pod was placed in a “U” shaped metal bracket attached to an electronic force gauge and the stem was pulled manually until the pod detached. After digging and combining, a tractor-mounted scavenger machine was used to collect pods remaining in the soil. Peg strength was greater at Dawson (6.14 N) compared to Tifton (5.28 N) in 2010 but were similar in 2011 (4.51 and 4.39 N, respectively). Dawson had consistently higher yields (5326 kg/ha) and lower pod loss (562 kg/ha) compared with Tifton (3803 kg/ha and 936 kg/ha, respectively). Peanut cultivars with greater peg strength across locations were Georgia-06G, Florida-07, and Georiga-02C. Cultivar Georiga-06G showed the greatest yield across locations and years. Other cultivars may have had stronger peg strength, greater pod yield, or lower pod loss but none were more consistent than these three cultivars across years, locations, and harvest dates.


2010 ◽  
Vol 37 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Ronald B. Sorensen ◽  
Timothy B. Brenneman ◽  
Marshall C. Lamb

Abstract Strip tillage with various crop covers in peanut (Arachis hypogaea, L.) production has not shown a clear yield advantage over conventional tillage, but has been found to reduce yield losses from some diseases. This study was conducted to determine pod yield and disease incidence between two tillage practices, five winter cover crops, three peanut cultivars, and three fungicide programs. Conventional and strip tillage treatments were implemented on a Greenville sandy loam (fine, kaolinitic, thermic Rhodic Kandiudults) near Shellman, GA. Five winter cereal grain cover crops (strip tillage) and a no-cover crop treatment were sprayed at recommended (1R), half recommended (0.5R) or untreated (0R) fungicide programs. Within peanut cultivars, leaf spot (Cercospora arachidicola Hori) intensity decreased as the number of fungicide applications increased; however, stem rot (Sclerotium rolfsii) incidence was the same for the 1R and 0.5R fungicide programs but increased 0R program. Conventional tilled peanuts developed more leaf spot compared with strip tillage. There was no difference in leaf spot ratings among winter crop covers. There was no difference in stem rot incidence with tillage or winter cover crop. There was no yield difference with peanut cultivar. Pod yield was the same for the 1R and 0.5R fungicide program (3867 kg/ha) but decreased at the 0R fungicide program (2740 kg/ha). Pod yield was greater with conventional tillage and strip tillage with black oats (Avena sativa L.) (3706 kg/ha) compared with strip tillage of other winter crop cover treatments (3358 kg/ha). Conventional tillage had more leaf spot, equal incidence of stem rot, and higher yield compared with strip tillage. The 0.5R fungicide program had the same yield compared with the 1R fungicide program implying a possible 50% savings on fungicide applications on well rotated fields with lower disease risk.


2010 ◽  
Vol 37 (1) ◽  
pp. 20-25
Author(s):  
Z. G. Taylor ◽  
L. R. Fisher ◽  
D. L. Jordan

Abstract Senescence and abscission of mature peanut pods is controlled by the ethylene cascade. Reducing senescence and abscission could involve inhibiting the ethylene cascade and allow greater harvest flexibility in peanut. Application of 1-methylcyclopropene (1-MCP), the ethylene binding inhibitor, may reduce senescence and abscission of mature peanut pods. Research was conducted from 2005 through 2008 in North Carolina to determine the effects of 1-MCP on pod yield and percentages of sound mature kernels (%SMK), sound splits (%SS), total sound mature kernels (%TSMK), other kernels (%OK), extra large kernels (%ELK), fancy pods (%FP), and pod retention. Treatments of 1-MCP were applied at 26 g ai/ha plus a crop oil concentrate at 7, 10, or 14 d prior to digging peanut at the projected optimum digging date. Peanut was dug at the projected optimum digging date or at 7 or 20 d after projected optimum digging date. The cultivars NC-V 11 (2005 and 2007), Phillips (2006 and 2007), and Perry (2008) were evaluated in separate experiments. Pod yield, %SMK, %TSMK, %SS, %OK, %ELK, and %FP were not affected by 1-MCP regardless of application timing when NC-V 11 and Phillips were evaluated. Only %SMK and %TSMK were affected by 1-MCP when applied to the cultivar Perry. Digging date affected pod yield and market grade characteristics. When digging of Phillips and Perry was delayed by 7 or 20 d past the optimum digging date, %SMK and %TSMK increased. Pod retention, determined by comparing the number and mass of pods/plant following digging, was affected by digging date and location but not 1-MCP treatment. These data suggest that 1-MCP will have little activity on peanut pod yield, market grade characteristics, or pod retention.


1998 ◽  
Vol 25 (1) ◽  
pp. 35-39 ◽  
Author(s):  
W. J. Grichar ◽  
B. A. Besler ◽  
A. J. Jaks

Abstract Peanut (Arachis hypogaea L.) pod yield and response to early and late leaf spots [caused by Cercospora arachidicola S. Hori and Cercosporidium personatum (Berk. & M. A. Curtis) Deighton, respectively] were evaluated on six runner-type cultivars under four leaf spot spray programs using tebuconazole at 0.23 kg ai/ha and chlorothalonil at 1.26 kg ai/ha. The four leaf spot spray programs included unsprayed, 14-d schedule, 21-d schedule, and 28-d schedule. With the 14- and 21-d schedule, chlorothalonil was applied at the first and last applications with a maximum of four tebuconazole applications for the middle sprays. On the 28-d schedule, tebuconazole was applied four times. Under conditions of heavy leaf spot disease pressure where no fungicide was applied, Southern Runner and Georgia Browne were slightly less susceptible (although not significantly) to early or late leaf spot than Florunner, GK-7, Georgia Runner, or Sunrunner. Less leaf spot was present in the 14-d schedule compared to 21- or 28-d schedules. Although there was no yield difference between the 14-, 21-, or 28-d schedules, the plots sprayed on a 14-d schedule yielded 43% more than the unsprayed. When averaged across all spray schedules, Georgia Browne yielded 15% more peanuts than Georgia Runner.


1997 ◽  
Vol 24 (2) ◽  
pp. 113-116 ◽  
Author(s):  
P. A. Dotray ◽  
J. W. Keeling

Abstract Field experiments in 1994 and 1995 compared control by imazameth at 53 and 71 g ai/ha and imazethapyr at 71 g ai/ha applied to purple nutsedge (Cyperus rotundus L.) 5, 10, 20, or 30 cm tall. Peanut (Arachis hypogaea L.) injury was not observed with either herbicide. Imazameth and imazethapyr were similarly effective on purple nutsedge for the first 1 to 2 mo after planting. Regardless of application timing, imazameth was more effective than imazethapyr at approximately 3 mo or more after planting. Timing of application affected late-season control by imazameth only in 1995 where greater control was obtained when applied to 10- or 20-cm purple nutsedge. Peanut yields were variable in 1994 and were not related to the imidazolinone herbicide used, the herbicide rate, or the level of purple nutsedge control. In 1995, yield from plots treated with imazameth at 53 g/ha was greater than yield from plots treated with imazameth or imazethapyr at 71 g/ha. Timing of herbicide application did not affect yield.


2009 ◽  
Vol 36 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Danésha S. Carley ◽  
David L. Jordan ◽  
Barbara B. Shew ◽  
Turner B. Sutton ◽  
L. Cecil Dharmasri ◽  
...  

Abstract Although response can be variable and is dependant upon many factors, digging peanut as little as 1 wk prior to or 1 wk following optimum maturity can result in substantial reductions in pod yield. While growers often assume that harvest should be initiated prior to optimum maturity in fields with high levels of canopy defoliation, there is no clear threshold where gains in pod weight and grade are offset by losses due to pod shedding. Moreover, yield loss relationships for foliar diseases have not been characterized for modern virginia market-type cultivars. Determining interactions between digging date and peanut canopy defoliation would assist growers and their advisors in making more informed decisions on when to initiate harvest to avoid yield loss. Research conducted from 2004–2005 in North Carolina established a range of defoliation levels in a total of seven fields. Fungicides were applied on a bi-weekly schedule from early July through mid-September, or were applied two times in July, or were not applied. Plots were dug early, 6 to 12 days before estimated optimum maturity, or at optimum maturity, as determined by the hull-scrape method. Although interactions between digging date and fungicide program were found in some cases, digging date and fungicide program effects often varied independently. A general recommendation of the percentage of canopy defoliation justifying early digging to prevent yield loss could not be determined from this research. However, data from these experiments reinforce the value of controlling early leaf spot, late leaf spot, and web blotch with timely fungicide applications and the importance of digging at optimum pod maturation for more recently released virginia market-type peanut.


Sign in / Sign up

Export Citation Format

Share Document