Reporter Gene Expression Patterns Regulated by an Ara h 2 Promoter Differ in Homologous Versus Heterologous Systems1

2012 ◽  
Vol 39 (1) ◽  
pp. 43-52 ◽  
Author(s):  
A Bhattacharya ◽  
M. L. Ramos ◽  
P. Faustinelli ◽  
P. Ozias-Akins

Abstract Peanut (Arachis hypogaea L.) is a globally important crop whose seeds are widely used in food products. Peanut seeds contain proteins that serve a nutrient reservoir function and that also are major allergens. As part of an investigation to determine the effect of reducing/eliminating the peanut allergen Ara h 2 from seeds, gene sequence including upstream regulatory regions was characterized. The ability of regions upstream of the translation initiation site to regulate seed-specific expression of reporter genes was tested in peanut and Arabidopsis. Two independent transgenic peanut lines biolistically transformed with 1kb of DNA upstream of the Ara h 2.02 (B-genome) coding sequence controlling a Green Fluorescent Protein – β-glucuronidase (Gfp-Gus) fusion were obtained. All T1, T2 and T3 generations of transgenic plants showed the expression of GFP and GUS restricted to seeds and near background levels in vegetative tissues. However, constitutive GUS expression was observed in Arabidopsis transgenic lines, a heterologous system. It is possible that trans-acting factors regulating seed specificity in peanut are too divergent in Arabidopsis to enable the seed specific response. Thus, the promoter described in this paper may have potential use for expression of transgenes in peanut where seed-specificity is desired, but expression patterns should be tested in heterologous systems prior to off-the-shelf adoption.

2019 ◽  
Vol 31 (1) ◽  
pp. 23-38 ◽  
Author(s):  
Haojia Wu ◽  
Chun-Fu Lai ◽  
Monica Chang-Panesso ◽  
Benjamin D. Humphreys

BackgroundProximal tubule injury can initiate CKD, with progression rates that are approximately 50% faster in males versus females. The precise transcriptional changes in this nephron segment during fibrosis and potential differences between sexes remain undefined.MethodsWe generated mice with proximal tubule–specific expression of an L10a ribosomal subunit protein fused with enhanced green fluorescent protein. We performed unilateral ureteral obstruction surgery on four male and three female mice to induce inflammation and fibrosis, collected proximal tubule–specific and bulk cortex mRNA at day 5 or 10, and sequenced samples to a depth of 30 million reads. We applied computational methods to identify sex-biased and shared molecular responses to fibrotic injury, including up- and downregulated long noncoding RNAs (lncRNAs) and transcriptional regulators, and used in situ hybridization to validate critical genes and pathways.ResultsWe identified >17,000 genes in each proximal tubule group, including 145 G-protein–coupled receptors. More than 700 transcripts were differentially expressed in the proximal tubule of males versus females. The >4000 genes displaying altered expression during fibrosis were enriched for proinflammatory and profibrotic pathways. Our identification of nearly 150 differentially expressed proximal tubule lncRNAs during fibrosis suggests they may have unanticipated regulatory roles. Network analysis prioritized proinflammatory and profibrotic transcription factors such as Irf1, Nfkb1, and Stat3 as drivers of fibrosis progression.ConclusionsThis comprehensive transcriptomic map of the proximal tubule revealed sexually dimorphic gene expression that may reflect sex-related disparities in CKD, proinflammatory gene modules, and previously unappreciated proximal tubule–specific bidirectional lncRNA regulation.


2013 ◽  
Vol 95 (3) ◽  
pp. 319-329
Author(s):  
Atsushi Hirao ◽  
Tatsuo Kawarasaki ◽  
Kenjiro Konno ◽  
Satoko Enya ◽  
Masatoshi Shibata ◽  
...  

2002 ◽  
Vol 184 (7) ◽  
pp. 1998-2004 ◽  
Author(s):  
Takako Murakami ◽  
Koki Haga ◽  
Michio Takeuchi ◽  
Tsutomu Sato

ABSTRACT The Bacillus subtilis spoIIIJ gene, which has been proven to be vegetatively expressed, has also been implicated as a sporulation gene. Recent genome sequencing information in many organisms reveals that spoIIIJ and its paralogous gene, yqjG, are conserved from prokaryotes to humans. A homologue of SpoIIIJ/YqjG, the Escherichia coli YidC is involved in the insertion of membrane proteins into the lipid bilayer. On the basis of this similarity, it was proposed that the two homologues act as translocase for the membrane proteins. We studied the requirements for spoIIIJ and yqjG during vegetative growth and sporulation. In rich media, the growth of spoIIIJ and yqjG single mutants were the same as that of the wild type, whereas spoIIIJ yqjG double inactivation was lethal, indicating that together these B. subtilis translocase homologues play an important role in maintaining the viability of the cell. This result also suggests that SpoIIIJ and YqjG probably control significantly overlapping functions during vegetative growth. spoIIIJ mutations have already been established to block sporulation at stage III. In contrast, disruption of yqjG did not interfere with sporulation. We further show that high level expression of spoIIIJ during vegetative phase is dispensable for spore formation, but the sporulation-specific expression of spoIIIJ is necessary for efficient sporulation even at the basal level. Using green fluorescent protein reporter to monitor SpoIIIJ and YqjG localization, we found that the proteins localize at the cell membrane in vegetative cells and at the polar and engulfment septa in sporulating cells. This localization of SpoIIIJ at the sporulation-specific septa may be important for the role of spoIIIJ during sporulation.


2001 ◽  
Vol 115 (6) ◽  
pp. 455-464 ◽  
Author(s):  
Xulun Zhang ◽  
Stephan L. Baader ◽  
Feng Bian ◽  
Wolfgang Müller ◽  
John Oberdick

Development ◽  
1997 ◽  
Vol 124 (20) ◽  
pp. 4105-4111 ◽  
Author(s):  
Q. Long ◽  
A. Meng ◽  
H. Wang ◽  
J.R. Jessen ◽  
M.J. Farrell ◽  
...  

In this study, DNA constructs containing the putative zebrafish promoter sequences of GATA-1, an erythroid-specific transcription factor, and the green fluorescent protein reporter gene, were microinjected into single-cell zebrafish embryos. Erythroid-specific activity of the GATA-1 promoter was observed in living embryos during early development. Fluorescent circulating blood cells were detected in microinjected embryos 24 hours after fertilization and were still present in 2-month-old fish. Germline transgenic fish obtained from the injected founders continued to express green fluorescent protein in erythroid cells in the F1 and F2 generations. The green fluorescent protein expression patterns in transgenic fish were consistent with the pattern of GATA-1 mRNA expression detected by RNA in situ hybridization. These transgenic fish have allowed us to isolate, by fluorescence-activated cell sorting, the earliest erythroid progenitor cells from developing embryos for in vitro studies. By generating transgenic fish using constructs containing other zebrafish promoters and green fluorescent protein reporter gene, it should be possible to visualize the origin and migration of any lineage-specific progenitor cells in a living embryo.


2014 ◽  
Vol 60 (3) ◽  
pp. 230-237 ◽  
Author(s):  
Hitomi MATSUNARI ◽  
Toshihiro KOBAYASHI ◽  
Masahito WATANABE ◽  
Kazuhiro UMEYAMA ◽  
Kazuaki NAKANO ◽  
...  

2001 ◽  
Vol 67 (4) ◽  
pp. 1865-1873 ◽  
Author(s):  
Teresa R. De Kievit ◽  
Richard Gillis ◽  
Steve Marx ◽  
Chris Brown ◽  
Barbara H. Iglewski

ABSTRACT Acylated homoserine lactone molecules are used by a number of gram-negative bacteria to regulate cell density-dependent gene expression by a mechanism known as quorum sensing (QS). InPseudomonas aeruginosa, QS or cell-to-cell signaling controls expression of a number of virulence factors, as well as biofilm differentiation. In this study, we investigated the role played by the las and rhl QS systems during the early stages of static biofilm formation when cells are adhering to a surface and forming microcolonies. These studies revealed a marked difference in biofilm formation between the PAO1 parent and the QS mutants when glucose, but not citrate, was used as the sole carbon source. To further elucidate the contribution of lasI andrhlI to biofilm maturation, we utilized fusions to unstable green fluorescent protein in concert with confocal microscopy to perform real-time temporal and spatial studies of these genes in a flowing environment. During the course of 8-day biofilm development,lasI expression was found to progressively decrease over time. Conversely, rhlI expression remained steady throughout biofilm development but occurred in a lower percentage of cells. Spatial analysis revealed that lasI andrhlI were maximally expressed in cells located at the substratum and that expression decreased with increasing biofilm height. Because QS was shown previously to be involved in biofilm differentiation, these findings have important implications for the design of biofilm prevention and eradication strategies.


2006 ◽  
Vol 395 (3) ◽  
pp. 501-507 ◽  
Author(s):  
John Wilkinson ◽  
Xiumin Di ◽  
Kai Schönig ◽  
Joan L. Buss ◽  
Nancy D. Kock ◽  
...  

Ferritin is a ubiquitously distributed iron-binding protein. Cell culture studies have demonstrated that ferritin plays a role in maintenance of iron homoeostasis and in the protection against cytokine- and oxidant-induced stress. To test whether FerH (ferritin H) can regulate tissue iron homoeostasis in vivo, we prepared transgenic mice that conditionally express FerH and EGFP (enhanced green fluorescent protein) from a bicistronic tetracycline-inducible promoter. Two transgenic models were explored. In the first, the FerH and EGFP transgenes were controlled by the tTACMV (Tet-OFF) (where tTA and CMV are tet transactivator protein and cytomegalovirus respectively). In skeletal muscle of mice bearing the FerH/EGFP and tTACMV transgenes, FerH expression was increased 6.0±1.1-fold (mean±S.D.) compared with controls. In the second model, the FerH/EGFP transgenes were controlled by an optimized Tet-ON transactivator, rtTA2S-S2LAP (where rtTA is reverse tTA and LAP is liver activator protein), resulting in expression predominantly in the kidney and liver. In mice expressing these transgenes, doxycycline induced FerH in the kidney by 14.2±4.8-fold (mean±S.D.). Notably, increases in ferritin in overexpressers versus control littermates were accompanied by an elevation of IRP (iron regulatory protein) activity of 2.3±0.9-fold (mean±S.D.), concurrent with a 4.5±2.1-fold (mean±S.D.) increase in transferrin receptor, indicating that overexpression of FerH is sufficient to elicit a phenotype of iron depletion. These results demonstrate that FerH not only responds to changes in tissue iron (its classic role), but can actively regulate overall tissue iron balance.


Sign in / Sign up

Export Citation Format

Share Document