scholarly journals The effects of thermal insulation on energy consumption in small office buildings in the context of subtropical monsoon climate

2020 ◽  
Vol 3 (4) ◽  
pp. 275-292
Author(s):  
Md. Jewel Rana ◽  
◽  
Md. Rakibul Hasan
2021 ◽  
Author(s):  
◽  
Brittany Grieve

<p>This thesis explored the impact of thermal insulation on the energy performance of New Zealand air-conditioned commercial office buildings. A sample of calibrated energy models constructed using real building performance data and construction information was used to ensure that the results produced were as realistic as possible to the actual building performance of New Zealand commercial office buildings. The aim was to assess how different climates and building attributes impact thermal insulation's ability to reduce energy consumption in New Zealand commercial office buildings.   Driven by the ever increasing demands for healthier, more comfortable, more sustainable buildings, building regulations have steadily increased the levels of insulation they require in new buildings over time. Improving the thermal properties of the building envelope with the addition of thermal insulation is normally used to reduce the amount of heating and cooling energy a building requires. Thermal insulation reduces the conductive heat transfer through the building envelope and with a higher level of thermal resistance, the less heat would transfer through the envelope. Consequently, the common expectation is that the addition of thermal insulation to the building envelope will always reduce energy consumption. However, this assumption is not always the case. For internal load dominated buildings located in certain climates, the presence of any or a higher level of thermal insulation may prevent heat loss through the wall, increasing the cooling energy required. This issue is thought to have not been directly examined in literature until 2008. However, an early study undertaken in New Zealand in 1996 found that for climates similar or warmer than Auckland, the addition of insulation could be detrimental to an office building's energy efficiency due to increased cooling energy requirements.  The energy performance of a sample of 13 real New Zealand office building energy models with varying levels of thermal insulation in 8 locations was examined under various scenarios. A parametric method of analysis using building energy modelling was used to assess the energy performance of the buildings. Buildings were modelled as built and standardised with the current NZS4243:2007 regulated and assumed internal load and operational values. The effect the cooling thermostat set point temperature had on the buildings' energy performance at varying levels of insulation was also tested.   The study concluded that the use of thermal insulation in New Zealand office buildings can cause an increase in cooling energy for certain types of buildings in any of the eight locations and thermal insulation levels explored in the study. The increase in cooling energy was significant enough to increase the total energy consumption of two buildings when modelled as built. These buildings were characterised by large internal loads, low performance windows with high window to wall ratios and low surface to volume ratios. The current minimum thermal resistance requirements were found to not be effective for a number of buildings in North Island locations.</p>


2021 ◽  
Author(s):  
◽  
Brittany Grieve

<p>This thesis explored the impact of thermal insulation on the energy performance of New Zealand air-conditioned commercial office buildings. A sample of calibrated energy models constructed using real building performance data and construction information was used to ensure that the results produced were as realistic as possible to the actual building performance of New Zealand commercial office buildings. The aim was to assess how different climates and building attributes impact thermal insulation's ability to reduce energy consumption in New Zealand commercial office buildings.   Driven by the ever increasing demands for healthier, more comfortable, more sustainable buildings, building regulations have steadily increased the levels of insulation they require in new buildings over time. Improving the thermal properties of the building envelope with the addition of thermal insulation is normally used to reduce the amount of heating and cooling energy a building requires. Thermal insulation reduces the conductive heat transfer through the building envelope and with a higher level of thermal resistance, the less heat would transfer through the envelope. Consequently, the common expectation is that the addition of thermal insulation to the building envelope will always reduce energy consumption. However, this assumption is not always the case. For internal load dominated buildings located in certain climates, the presence of any or a higher level of thermal insulation may prevent heat loss through the wall, increasing the cooling energy required. This issue is thought to have not been directly examined in literature until 2008. However, an early study undertaken in New Zealand in 1996 found that for climates similar or warmer than Auckland, the addition of insulation could be detrimental to an office building's energy efficiency due to increased cooling energy requirements.  The energy performance of a sample of 13 real New Zealand office building energy models with varying levels of thermal insulation in 8 locations was examined under various scenarios. A parametric method of analysis using building energy modelling was used to assess the energy performance of the buildings. Buildings were modelled as built and standardised with the current NZS4243:2007 regulated and assumed internal load and operational values. The effect the cooling thermostat set point temperature had on the buildings' energy performance at varying levels of insulation was also tested.   The study concluded that the use of thermal insulation in New Zealand office buildings can cause an increase in cooling energy for certain types of buildings in any of the eight locations and thermal insulation levels explored in the study. The increase in cooling energy was significant enough to increase the total energy consumption of two buildings when modelled as built. These buildings were characterised by large internal loads, low performance windows with high window to wall ratios and low surface to volume ratios. The current minimum thermal resistance requirements were found to not be effective for a number of buildings in North Island locations.</p>


2007 ◽  
Vol 72 (615) ◽  
pp. 81-87
Author(s):  
Kazuhiko SAKAMOTO ◽  
Saburo MURAKAWA ◽  
Michimasa SHINOHARA ◽  
Daisaku NISHINA ◽  
Yoshiyuki UEMURA

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2064
Author(s):  
Jin-Hee Kim ◽  
Seong-Koo Son ◽  
Gyeong-Seok Choi ◽  
Young-Tag Kim ◽  
Sung-Bum Kim ◽  
...  

Recently, there have been significant concerns regarding excessive energy use in office buildings with a large window-to-wall ratio (WWR) because of the curtain wall structure. However, prior research has confirmed that the impact of the window area on energy consumption varies depending on building size. A newly proposed window-to-floor ratio (WFR) correlates better with energy consumption in the building. In this paper, we derived the correlation by analyzing a simulation using EnergyPlus, and the results are as follows. In the case of small buildings, the results of this study showed that the WWR and energy requirement increase proportionally, and the smaller the size is, the higher the energy sensitivity will be. However, results also confirmed that this correlation was not established for buildings approximately 3600 m2 or larger. Nevertheless, from analyzing the correlation between the WFR and the energy requirements, it could be deduced that energy required increased proportionally when the WFR was 0.1 or higher. On the other hand, the correlation between WWR, U-value, solar heat gain coefficient (SHGC), and material property values of windows had little effect on energy when the WWR was 20%, and the highest effect was seen at a WWR of 100%. Further, with an SHGC below 0.3, the energy requirement decreased with an increasing WWR, regardless of U-value. In addition, we confirmed the need for in-depth research on the impact of the windows’ U-value, SHGC, and WWR, and this will be verified through future studies. In future studies on window performance, U-value, SHGC, visible light transmittance (VLT), wall U-value as sensitivity variables, and correlation between WFR and building size will be examined.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6597
Author(s):  
Ahmet Bircan Atmaca ◽  
Gülay Zorer Gedik ◽  
Andreas Wagner

Mosques are quite different from other building types in terms of occupant type and usage schedule. For this reason, they should be evaluated differently from other building types in terms of thermal comfort and energy consumption. It is difficult and probably not even necessary to create homogeneous thermal comfort in mosques’ entire usage area, which has large volumes and various areas for different activities. Nevertheless, energy consumption should be at a minimum level. In order to ensure that mosques are minimally affected by outdoor climatic changes, the improvement of the properties of the building envelope should have the highest priority. These optimal properties of the building envelope have to be in line with thermal comfort in mosques. The proposed method will be a guide for designers and occupants in the design process of new mosques or the use of existing mosques. The effect of the thermal properties of the building envelope on energy consumption was investigated to ensure optimum energy consumption together with an acceptable thermal comfort level. For this purpose, a parametric simulation study of the mosques was conducted by varying optical and thermal properties of the building envelope for a temperature humid climate zone. The simulation results were analyzed and evaluated according to current standards, and an appropriate envelope was determined. The results show that thermal insulation improvements in the roof dome of buildings with a large volume contributed more to energy savings than in walls and foundations. The use of double or triple glazing in transparent areas is an issue that should be considered together with the solar energy gain factor. Additionally, an increasing thickness of thermal insulation in the building envelope contributed positively to energy savings. However, the energy savings rate decreased after a certain thickness. The proposed building envelope achieved a 33% energy savings compared to the base scenario.


Sign in / Sign up

Export Citation Format

Share Document