scholarly journals CFD SIMULATION OF HEAT TRANSFER WITH SPIRAL-WIRE DISPLACEMENT ON THE PIPE

2021 ◽  
Vol 43 (4) ◽  
pp. 34-42
Author(s):  
V.S. Oliinyk ◽  
P.G. Krukovskyi ◽  
A.I. Deineko

The results of the study of the intensification of the heat transfer process under forced air convection in the annular gap of a pipe-in-pipe heat exchanger with a spiral-wire intensifier located near the outer surface of the inner pipe are presented. The intensifier does not touch the pipe surface. The height of the wire of the intensifier is taken as 1.5 mm. The change in the winding pitch varied within the range of 12-20mm. Boundary conditions of the first kind + 20 ° C are set on the inner surface of the inner pipe. The temperature of the air moving in the annular gap is 300 ° C. The air velocity varied from 6 to 15 m / s. For the CFD model of a pipe-in-pipe heat exchanger, the use of a computational grid with 4.7 million elements is justified. The CFD model was validated using literature data. Based on the analysis of the ratio of the intensified Nusselt number to the Nusselt number for a smooth pipe, a 1.7-fold increase in heat transfer was found for Reynolds numbers from 5000 to 7000. This result is explained by the periodic destruction of the boundary layer along the pipe. With a further increase in Reynolds numbers to 13000, the intensification of heat transfer decreases from 1.7 to 1.3, which is explained by an increase in the vortex zone immediately behind the wire and the appearance of recirculation zones that make a minimum contribution to heat transfer. It has been determined that the spiral-wire intensifier with the maximum possible step of 20 mm contributes to the greatest increase in heat transfer by 1.7 times and has the smallest coefficient of hydraulic friction of 0.076-0.06 for the studied range of Reynolds numbers.

2021 ◽  
Author(s):  
Matthew Searle ◽  
Arnab Roy ◽  
James Black ◽  
Doug Straub ◽  
Sridharan Ramesh

Abstract In this paper, experimental and numerical investigations of three variants of internal cooling configurations — dimples only, ribs only and ribs with dimples have been explored at process conditions (96°C and 207bar) with sCO2 as the coolant. The designs were chosen based on a review of advanced internal cooling features typically used for air-breathing gas turbines. The experimental study described in this paper utilizes additively manufactured square channels with the cooling features over a range of Reynolds number from 80,000 to 250,000. Nusselt number is calculated in the experiments utilizing the Wilson Plot method and three heat transfer characteristics — augmentation in Nusselt number, friction factor and overall Thermal Performance Factor (TPF) are reported. To explore the effect of surface roughness introduced due to additive manufacturing, two baseline channel flow cases are considered — a conventional smooth tube and an additively manufactured square tube. A companion computational fluid dynamics (CFD) simulation is also performed for the corresponding cooling configurations reported in the experiments using the Reynolds Averaged Navier Stokes (RANS) based turbulence model. Both experimental and computational results show increasing Nusselt number augmentation as higher Reynolds numbers are approached, whereas prior work on internal cooling of air-breathing gas turbines predict a decay in the heat transfer enhancement as Reynolds number increases. Comparing cooling features, it is observed that the “ribs only” and “ribs with dimples” configurations exhibit higher Nusselt number augmentation at all Reynolds numbers compared to the “dimples only” and the “no features” configurations. However, the frictional losses are almost an order of magnitude higher in presence of ribs.


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Chin Yung Shin ◽  
Normah Mohd-Ghazali

In this research, the trapezoidal shaped chevron plate heat exchanger (PHE) is simulated using computational fluid dynamics (CFD) software to determine its heat transfer capacity and friction factor. The PHE is modelled with chevron angles from 30° to 60°, and also the performances are compared with the plain PHE. The validation is done by comparing simulation result with published references using 30° trapezoidal chevron PHE. The Nusselt number and friction factor obtained from simulation model is plotted against different chevron angles. The Nusselt number and friction factor is also compared with available references, which some of the references used sinusoidal chevron PHE. The general pattern of Nusselt number and friction factor with increasing chevron angle agrees with the references. The heat transfer capacity found in current study is higher than the references used, and at the same time, the friction factor also increased. Besides this, it is also found that the counter flow configuration has better heat transfer capacity performance than the parallel flow configuration.


2020 ◽  
Vol 17 (5) ◽  
pp. 751-760
Author(s):  
Shanmukh Sudhir Arasavelli ◽  
Ramakrishna Konijeti ◽  
Govinda Rao Budda

Purpose This paper aims to deal with heat transfer enhancement because of transverse vibration on counter flow concentric pipe heat exchanger. Experiments were performed at different vibrator positions with varying amplitudes and frequencies. Design/methodology/approach Tests are carried out at 4 different vibration frequencies (20, 40, 60 and 100 Hz), 3 vibration amplitudes (23, 46 and 69 mm) and at 3 vibrator positions (1/4, 1/2 and 3/4 of pipe length) with respect to hot water inlet under turbulent flow condition. Findings Experimental results indicate that Nusselt number is enhanced to a maximum extent of 44% with vibration when compared to Nusselt number without vibration at a frequency of 40 Hz, an amplitude of 69 mm and at a vibrator position of one-fourth of pipe length with respect to hot water inlet. Originality/value Empirical correlation is developed from experimental data to estimate the heat transfer coefficient with vibration for experimental frequency range with an error estimate of approximately ±10%.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Reza Aghayari ◽  
Heydar Maddah ◽  
Malihe Zarei ◽  
Mehdi Dehghani ◽  
Sahar Ghanbari Kaskari Mahalle

This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%–0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%–24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.


2021 ◽  
pp. 1-38
Author(s):  
Matthew Searle ◽  
Arnab Roy ◽  
James Black ◽  
Douglas Straub ◽  
Sridharan Ramesh

Abstract Experimental and numerical investigations of three variants of internal cooling configurations – dimples only, ribs only and ribs with dimples have been explored at process conditions (96°C and 207bar) with sCO2 as the coolant. The designs were chosen based on advanced internal cooling features typically used for air-breathing gas turbines. The experimental study described utilizes additively manufactured square channels with the cooling features over a range of Reynolds number from 80,000 to 250,000. Nusselt number is experimentally calculated utilizing the Wilson Plot method and three heat transfer characteristics – augmentation in Nusselt number, friction factor and overall Thermal Performance Factor (TPF) are reported. To explore the effect of surface roughness introduced due to additive manufacturing, two baseline flow cases are considered – a conventional smooth tube and an additively manufactured square tube. A companion computational fluid dynamics (CFD) simulation is also performed for the corresponding cooling configurations reported in the experiments using the Reynolds Averaged Navier Stokes (RANS) based turbulence model. Both experimental and computational results show increasing Nusselt number augmentation as higher Reynolds numbers are approached, whereas prior work on internal cooling of air-breathing gas turbines predict a decay in the heat transfer enhancement as Reynolds number increases. Comparing cooling features, it is observed that the “ribs only” and “ribs with dimples” configurations exhibit higher Nusselt number augmentation at all Reynolds numbers compared to the “dimples only” and the “no features” configurations. However, the frictional losses are almost an order of magnitude higher in presence of ribs.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Qiu-Wang Wang ◽  
Dong-Jie Zhang ◽  
Gong-Nan Xie

Heat transfer and pressure drop characteristics of a cross-corrugated (CC) primary surface heat exchanger with different CC passages (P/H=2, θ=60 and 120 deg, called CC2-60 and CC2-120, respectively) in two air sides have been experimentally investigated in this study. It is shown that the corrugation angle (θ) and the ratio of the wavelength P to height H(P/H) are the two key parameters of CC passages to influence the heat transfer and flow friction performances. The heat transfer and friction factor correlations for these two configurations are also obtained with Reynolds numbers ranging from Re=450–5500(CC2-60) and Re=570–6700(CC2-120). At a certain P/H, the Nusselt number, Nu, and the friction factor, f, are affected by the corrugation angle, θ. The heat transfer performance of CC2-120 are much better than that of CC2-60 while the pressure drop of the former is higher than that of the latter, especially at high Reynolds numbers region. The critical Reynolds numbers at which the flow mode transits from laminar to turbulent in the two different passages are also estimated. Furthermore, in this study a genetic algorithm (GA) has been used to determine the coefficients of heat transfer correlations by separation of total heat transfer coefficient without any information of measured wall temperatures. It is concluded that the GA-based separated heat transfer Nusselt number provides a good agreement with the experimental data; the averaged relative deviation by GA (1.95%) is lower than that by regression analysis (2.84%). The inversely yielding wall temperatures agree well with the measured data in turn supporting the reliability of experimental system and measurements. It is recommended that GA techniques can be used to handle more complicated problems and to obtain both-side heat transfer correlations simultaneously, where the conventional Wilson-plot method cannot be applied.


Double pipe heat exchanger has wide applications in industrial process. Thermo-hydro performance plays an important role from the economic point of view. Different enhancement techniques are available for the improvement of heat transfer. In this study the hydrothermal performance of double pipe heat exchanger with single and double HTI on inner pipe of double pipe heat exchanger were experimentally examined. Two types of inner tubes with single and double helical tape was fabricated. Experiments were performed by different mass flow rate of annulus side in the range of 0.072- 0.21 kg/s varied. In order to validate the result three dimensional CFD simulations are performed, using Fluent software. CFD simulations analysis was done under turbulent flow conditions. Key design parameters such as heat transfer coefficient and Nusselt number are evaluated in order to predict the performance of DPHE. Findings from this study shows that hydrothermal performance of double pipe heat exchanger with double helical tape is better than single HTI. Moreover both the results of CFD simulation & experimental one are in good agreement. Therefore, the present study will help the manufacturers in providing the better thermal performance of DPHE.


2018 ◽  
Vol 144 ◽  
pp. 04012
Author(s):  
Akarsh Kumar ◽  
Ujjawal Sureka ◽  
Shiva Kumar

In the present study numerical analysis of enhancement in heat transfer characteristics in a double pipe heat exchanger is studied using a holed twisted tape.The twisted tape with a constant twist ratio is inserted in a double pipe heat exchanger. Holes of diameter 1mm, 3 mm and 5 mm were drilled at regular pitch throughout the length of the tape. Numerical modeling of a double pipe heat exchanger with the holed twisted tape was constructed considering hot fluid flowing in the inner pipe and cold fluid through the annulus.Simulation was done for varied mass flow rates of hot fluid in the turbulent condition keeping the mass flow rate of cold fluid being constant. Thermal properties like Outlet temperatures, Nusselt number, overall heat transfer coefficient, heat transfer rate and pressure drop were determined for all the cases. Results indicated that normaltwisted tape without holes performed better than the bare tube. In the tested range of mass flow rates the average Nusselt number and heat transfer rate were increased by 85% and 34% respectively. Performance of Twisted tape with holes was slightly reduced than the normal twisted tape and it deteriorated further for higher values hole diameter. Pressure drop was found to be higher for the holed twisted tape than the normal tape.


Author(s):  
G. Arvind Rao ◽  
Yeshyahou Levy

Finned tubes are one of the most widely used means of passively enhancing the heat transfer in circular tubes. Many investigators have proposed different correlations for predicting the performance of such heat exchangers based on their experimental investigations. However, the practical usage of such correlations is limited because of the variety of parameters that can influence Nusselt number and friction factor. Most of the correlations either have been developed with limited databases, or are geometry specific. Using CFD for analyzing performance of such heat exchangers is very computational intensive and hence cannot practically be applied for design optimization purposes. On the other hand, empirical correlations have many limitations in terms of their applicability. The objective of the present article is to present a physically based model for evaluating heat transfer and frictional loss for an internally and / or externally finned double pipe heat exchanger that can be applied in a wide range of operating conditions of practical importance. This paper describes a simple semi-empirical-numerical methodology to evaluate heat transfer and pressure drop characteristics in a finned tube heat exchanger with internal and/or external fins. Conduction and turbulent forced convection are the prominent modes of heat transfer. In order to resolve the operational characteristics of double pipe finned heat exchangers, a numerical methodology is presented which uses well known existing correlations for flow in a smooth pipe and flow over a flat plate. The method of successive substitution is used to solve the problem numerically. The proposed methodology is applied to some simple cases and the results compare well with existing data and correlations available in the literature. It is found that the addition of fins to such double pipe heat exchangers reduce the Nusselt Number; however the corresponding heat transfer rate is enhanced owing to the increase in the overall heat transfer area.


2019 ◽  
Vol 13 (4) ◽  
pp. 6112-6124
Author(s):  
M. A. Ashham ◽  
S. H. Raheemah ◽  
K. Salman

The current study focused on statistically investigating nanofluids’ turbulent flow and rate of heat transfer in double pipe heat exchanger with rod inserts. Through the use of numerical simulation, the effects which the various kinds of nanofluids have on the enhancement of heat transfer using finite volume method (FVM) are studied. An application of homogeneous heat flux is made to the tube wall. More so, an examination of the effect of three varying slant angles of rod insert (α = 25°, 30°, 45°) was carried out at varying Reynolds number ranging from 7500 - 20000. The statistical results revealed that the coefficient of transferring heat in the tube containing rod inserts is higher than that of the smooth tube. In addition, results also showed that when rod insert are used in double pipe heat exchanger to augment the Nusselt number increases the slant angle. The max value of Nusselt number was demonstrated at the angle 45° of rod insert. Through the use of the rod inserts at (α=45°) and (S = 30mm), the coefficient of maximal skin friction was determined because of the resistance of larger flow. The maximal value of the Performance Evaluation Criteria (PEC) was mentioned in the case of min slant angle of (α = 25°) and the pitch distance of S = 30 mm.


Sign in / Sign up

Export Citation Format

Share Document