Deck Slab Replacement Work that Realized Rapid Construction by Applying New Technologies

2020 ◽  
Vol 58 (4) ◽  
pp. 297-302
Author(s):  
K. Goto ◽  
T. Tominaga ◽  
H. Amano ◽  
S. Aoki
Buildings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 173
Author(s):  
Pia Schönbeck ◽  
Malin Löfsjögård ◽  
Anders Ansell

The development of technologies associated with the fourth industrial revolution is rapid. Construction 4.0 represents the architecture, engineering, construction and operations industries exploration of new technologies, equivalent to Industry 4.0 for the manufacturing industry. These concepts address multiple perspectives besides the technological, such as management and processes. The purpose of this study was to investigate to what extent research regarding construction projects addresses information and communication, automatisation or industrialisation technologies. A scoping review was the method used to perform a quantitative analysis of over two thousand journal papers published from 2015 onwards. The results show that new technologies are addressed separately, while synergy studies are uncommon. Longitudinal analyses show that there was no significant increase in journal papers concerning new technologies from 2015 to 2019. Information and communication was the search criterion with the least number of papers found. The environmental perspective of new technologies was present but the least common from 2019 to 2020. Hence, this review shows that there is an extensive research gap regarding Construction 4.0 technologies in the context of construction projects. Studies regarding synergy and environmental effects of new technologies should increase to start the progress towards a successful entry into the fourth industrial revolution.


2013 ◽  
Vol 756-759 ◽  
pp. 477-481
Author(s):  
Jue Li ◽  
Yao Lu ◽  
Bing Qi ◽  
Xiang Jun Liu

With the rapid construction of UHV power grid in China, the difficulty of transmission lines inspection and maintenance has increased dramatically. Thus it is urgent to adopt new technologies to replace the traditional manual mode of transmission lines inspection and maintenance. In this paper, the characteristics and applications in UHV transmission lines inspection of 3G and COFDM technology are analyzed and compared.


2018 ◽  
Vol 56 (12) ◽  
pp. 1010-1014
Author(s):  
S. Muragishi ◽  
H. Suzuki ◽  
T. Nishihara ◽  
T. Ichinomiya

Author(s):  
Klaus-Ruediger Peters

Only recently it became possible to expand scanning electron microscopy to low vacuum and atmospheric pressure through the introduction of several new technologies. In principle, only the specimen is provided with a controlled gaseous environment while the optical microscope column is kept at high vacuum. In the specimen chamber, the gas can generate new interactions with i) the probe electrons, ii) the specimen surface, and iii) the specimen-specific signal electrons. The results of these interactions yield new information about specimen surfaces not accessible to conventional high vacuum SEM. Several microscope types are available differing from each other by the maximum available gas pressure and the types of signals which can be used for investigation of specimen properties.Electrical non-conductors can be easily imaged despite charge accumulations at and beneath their surface. At high gas pressures between 10-2 and 2 torr, gas molecules are ionized in the electrical field between the specimen surface and the surrounding microscope parts through signal electrons and, to a certain extent, probe electrons. The gas provides a stable ion flux for a surface charge equalization if sufficient gas ions are provided.


2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


2014 ◽  
Vol 25 (4) ◽  
pp. 279-287 ◽  
Author(s):  
Stefan Hey ◽  
Panagiota Anastasopoulou ◽  
André Bideaux ◽  
Wilhelm Stork

Ambulatory assessment of emotional states as well as psychophysiological, cognitive and behavioral reactions constitutes an approach, which is increasingly being used in psychological research. Due to new developments in the field of information and communication technologies and an improved application of mobile physiological sensors, various new systems have been introduced. Methods of experience sampling allow to assess dynamic changes of subjective evaluations in real time and new sensor technologies permit a measurement of physiological responses. In addition, new technologies facilitate the interactive assessment of subjective, physiological, and behavioral data in real-time. Here, we describe these recent developments from the perspective of engineering science and discuss potential applications in the field of neuropsychology.


2000 ◽  
Vol 45 (4) ◽  
pp. 437-439
Author(s):  
Michele Knobel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document