scholarly journals Teucrium polium Extract Enhances the Anti-Angiogenic Effect of Tranilast in a Three-Dimensional Fibrin Matrix Model

2021 ◽  
Vol 22 (8) ◽  
pp. 2471-2478
Author(s):  
Fatemeh Sheikhbahaei ◽  
Seyed Noureddin Nematollahi-Mahani ◽  
Mozafar Khazaei ◽  
Mohammad Rasool Khazaei ◽  
Saeed Khazayel
2011 ◽  
Vol 186 ◽  
pp. 61-65
Author(s):  
Yong Shan Liu ◽  
Wei Jie Gu

The xoy and xoz planes are divided into nine areas in three-dimensional space respectively by the MBR (Minimum Bounding Rectangle), which are produced by the reference objects’ projection to their planes. The intersecting situations between the projection of target objects and the two of reference objects are expressed by two 3×3 matrices. Then, a directional relations matrix model based on double projections is put forward. A combinational reasoning method is proposed by using the computational performance of matrices based on this model. Moreover, a combinational reasoning experiment is given and the result matches the reality.


1992 ◽  
Vol 07 (11) ◽  
pp. 937-953 ◽  
Author(s):  
SUMIT R. DAS ◽  
AVINASH DHAR ◽  
GAUTAM MANDAL ◽  
SPENTA R. WADIA

We explore consequences of W-infinity symmetry in the fermionic field theory of the c=1 matrix model. We derive exact Ward identities relating correlation functions of the bilocal operator. These identities can be expressed as equations satisfied by the effective action of a three-dimensional theory and contain non-perturbative information about the model. We use these identities to calculate the two-point function of the bilocal operator in the double scaling limit. We extract the operator whose two-point correlator has a single pole at an (imaginary) integer value of the energy. We then rewrite the W-infinity charges in terms of operators in the matrix model and use this to derive constraints satisfied by the partition function of the matrix model with a general time dependent potential.


Author(s):  
Vahide Askari ◽  
Somayeh Shamlou ◽  
Ali Mostafaie ◽  
Sara Khaleqi

Angiogenesis has essential role in growth and metastasis of tumors. Development of therapies aimed to suppress angiogenesis using medicinal plants is one of the effective approaches for prevention/treatment of cancer. The current study was performed to investigate in vitro anti-angiogenic effect of Teucrium Polium (TP) extract and its fractions. The aerial part of Teucrium Polium was powdered and extracted with 50% ethanol. The extract was fractionated in to aqueous (AQ), n-butanol (BU), ethyl acetate (EA) and n-hexane (HE) fractions. Anti-angiogenic effect of TP was examined on human umbilical vein endothelial cells (HUVECs) in three-dimensional collagen matrix. The endothelial cells form capillary-like branches that can be visualized using phase contrast microscope and the number of tube-like structures can be quantified as a measure of in vitro angiogenesis. Furthermore, anti-proliferative and vascular endothelial growth factor(VEGF )suppressive effect of TP as important factors in the process of angiogenesis were assessed using3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)and quantitative ELISA, respectively. Based on our findings, among the TP fractions, EA fraction showed the highest inhibitory activity on angiogenesis. This fraction with IC50: 68 µg/mL, inhibited angiogenesis at 60 µg/mL. The crude extract and other fractions of TP inhibited angiogenesis in a dose-dependent manner at doses higher concentrations than EA fraction, significantly.TP extract and EA fraction were able to inhibit proliferation of HUVEC and inhibited VEGF secretion in a dose dependent manner. The ethyl acetate fraction at 60 µg/ml inhibited VEGF secretion perfectly. Our data indicated that ethyl acetate fraction of Teucrium Polium could be a potential candidate for the prevention of angiogenesis in cancer and other related disorders. However, this suggestion needs more quantitative and in vivo investigations for confirmation.


2003 ◽  
Vol 90 (11) ◽  
pp. 921-929 ◽  
Author(s):  
Yvette Hensbergen ◽  
Erna Peters ◽  
Sareena Rana ◽  
Yvonne Elderkamp ◽  
Victor van Hinsbergh ◽  
...  

SummaryThe aminopeptidase inhibitor bestatin has been shown to have anti-angiogenic effects in a number of model systems. These effects are thought to result from inhibition of CD13 activity. Because tumor angiogenesis can evolve in a fibrin-rich stroma matrix we have studied for the first time the effects of bestatin on microvascular endothelial capillary-like tube formation in a fibrin matrix. Bestatin enhanced the formation of capillary-like tubes dose-dependently. Its effects were apparent at 8 µM; the increase was 3.7-fold at 125 µM; while high concentrations (>250 µM), that were shown to have anti-angiogenic effects in other systems, caused extensive matrix degradation. Specific CD13-blocking antibodies WM15 and MY-7, and the aminopeptidase inhibitors amastatin and actinonin also enhanced capillary-like tube formation (maximally 1.5-fold), but these effects did not reach statistical significance. The effect of bestatin was not due to a change in uPAR availability because the relative involvement of the u-PA/u-PAR activity was not altered by bestatin. In view of the present findings we hypothesize that aminopeptidases other than CD13 predominantly contribute to the observed pro-angiogenic effect of bestatin in a fibrin matrix. The identification of this novel effect of bestatin is important in the light of the proposed use of bestatin as anti-angiogenic and/or anti-tumor agent.


2019 ◽  
Vol 6 (3) ◽  
pp. 57 ◽  
Author(s):  
Choyi Wong ◽  
Suyog Yoganarasimha ◽  
Caroline Carrico ◽  
Parthasarathy Madurantakam

Guided tissue regeneration (GTR) aims to regenerate the lost attachment apparatus caused by periodontal disease through the use of a membrane. The goal of this study is to create and characterize a novel hybrid membrane that contains biologically active fibrin matrix within a synthetic polycaprolactone (PCL) electrospun membrane. Three-dimensional fibrin matrices and fibrin-incorporated electrospun membrane were created from fresh frozen plasma by centrifugation in glass vials under three different conditions: 400 g for 12 min, 1450 g for 15 min and 3000 g for 60 min. Half the membranes were crosslinked with 1% genipin. Degradation against trypsin indicated biologic stability while uniaxial tensile testing characterized mechanical properties. Continuous data was analyzed by ANOVA to detect differences between groups (p = 0.05). Fibrin-incorporated electrospun membranes showed statistically significant increase in mechanical properties (elastic modulus, strain at break and energy to break) compared to fibrin matrices. While crosslinking had marginal effects on mechanical properties, it did significantly increase biologic stability against trypsin (p < 0.0001). Lastly, membranes generated at 400 g and 1450 g were superior in mechanical properties and biologic stability compared to those generated at 3000 g. Fibrin-incorporated, crosslinked electrospun PCL membranes generated at lower centrifugation forces offers a novel strategy to generate a potentially superior membrane for GTR procedures.


2009 ◽  
Vol 91 (5) ◽  
pp. 2172-2176 ◽  
Author(s):  
Mozafar Khazaei ◽  
Azadeh Montaseri ◽  
Robert F. Casper

Sign in / Sign up

Export Citation Format

Share Document