scholarly journals Morphological Alterations and Virulence Gene Expression of Listeria Monocytogenes Cells in Response to Gamma Irradiation Treatments

2021 ◽  
Vol 04 (5) ◽  
pp. 01-09
Author(s):  
Hamouda Elabed

Gamma irradiation is one of the most popular ray treatments in food industry. It's used to control micro-organisms proliferation in a wide range of products however the response of bacteria to low doses is still unknown. In this study we mainly focus on morphological alteration and virulence gene expression in Listeria monocytogenes after gamma irradiation treatments. The atomic force micrographs (AFM) showed that 0.5 kGy dose has no effect on the membrane morphology of L. monocytogenes. However, after 0.7 kGy treatment, the cells lost their typical shape and smooth membrane and 1 kGy dose was totally destructive. Moreover, membrane fatty acid composition was analyzed by the chromatographic method after different gamma doses. Significant modifications on fatty acids composition were detected in the irradiated strain showing a novo synthesis of membrane lipids: C12:0; C14:0; C15:0; C16:0 and C18:0. In addition, we reported an increase of the saturated fatty acid, essential for membrane adaptation under stress conditions. The expression levels of three virulence genes (hlyA, fri and prfA) were studied in the same conditions using real-time PCR technique. The analysis revealed that both prfA and fri genes were up-regulated after gamma treatment. The induction of prfA, which is a regulator gene, may affect the expression other genes controlling the adaptive form in the treated strain. This study open prospects for further researches to explain the regulatory mechanisms of the adaptive response in Listeria monocytogenes when exposed to sublethal irradiation-stress.

2009 ◽  
Vol 77 (5) ◽  
pp. 2113-2124 ◽  
Author(s):  
Juliane Ollinger ◽  
Barbara Bowen ◽  
Martin Wiedmann ◽  
Kathryn J. Boor ◽  
Teresa M. Bergholz

ABSTRACT Listeria monocytogenes σB and positive regulatory factor A (PrfA) are pleiotropic transcriptional regulators that coregulate a subset of virulence genes. A positive regulatory role for σB in prfA transcription has been well established; therefore, observations of increased virulence gene expression and hemolytic activity in a ΔsigB strain initially appeared paradoxical. To test the hypothesis that L. monocytogenes σB contributes to a regulatory network critical for appropriate repression as well as induction of virulence gene expression, genome-wide transcript profiling and follow-up quantitative reverse transcriptase PCR (qRT-PCR), reporter fusion, and phenotypic experiments were conducted using L. monocytogenes prfA*, prfA* ΔsigB, ΔprfA, and ΔprfA ΔsigB strains. Genome-wide transcript profiling and qRT-PCR showed that in the presence of active PrfA (PrfA*), σB is responsible for reduced expression of the PrfA regulon. σB-dependent modulation of PrfA regulon expression reduced the cytotoxic effects of a PrfA* strain in HepG2 cells, highlighting the functional importance of regulatory interactions between PrfA and σB. The emerging model of the role of σB in regulating overall PrfA activity includes a switch from transcriptional activation at the P2 prfA promoter (e.g., in extracellular bacteria when PrfA activity is low) to posttranscriptional downregulation of PrfA regulon expression (e.g., in intracellular bacteria when PrfA activity is high).


2006 ◽  
Vol 61 (6) ◽  
pp. 1622-1635 ◽  
Author(s):  
Marianne H. Larsen ◽  
Birgitte H. Kallipolitis ◽  
Janne K. Christiansen ◽  
John E. Olsen ◽  
Hanne Ingmer

2003 ◽  
Vol 185 (19) ◽  
pp. 5722-5734 ◽  
Author(s):  
Mark J. Kazmierczak ◽  
Sharon C. Mithoe ◽  
Kathryn J. Boor ◽  
Martin Wiedmann

ABSTRACT While the stress-responsive alternative sigma factor σB has been identified in different species of Bacillus, Listeria, and Staphylococcus, theσ B regulon has been extensively characterized only in B. subtilis. We combined biocomputing and microarray-based strategies to identify σB-dependent genes in the facultative intracellular pathogen Listeria monocytogenes. Hidden Markov model (HMM)-based searches identified 170 candidateσ B-dependent promoter sequences in the strain EGD-e genome sequence. These data were used to develop a specialized, 208-gene microarray, which included 166 genes downstream of HMM-predicted σB-dependent promoters as well as selected virulence and stress response genes. RNA for the microarray experiments was isolated from both wild-type and ΔsigB null mutant L. monocytogenes cells grown to stationary phase or exposed to osmotic stress (0.5 M KCl). Microarray analyses identified a total of 55 genes with statistically significantσ B-dependent expression under the conditions used in these experiments, with at least 1.5-fold-higher expression in the wild type over the sigB mutant under either stress condition (51 genes showed at least 2.0-fold-higher expression in the wild type). Of the 55 genes exhibiting σB-dependent expression, 54 were preceded by a sequence resembling the σB promoter consensus sequence. Rapid amplification of cDNA ends-PCR was used to confirm the σB-dependent nature of a subset of eight selected promoter regions. Notably, theσ B-dependent L. monocytogenes genes identified through this HMM/microarray strategy included both stress response genes (e.g., gadB, ctc, and the glutathione reductase gene lmo1433) and virulence genes (e.g., inlA, inlB, and bsh). Our data demonstrate that, in addition to regulating expression of genes important for survival under environmental stress conditions, σB also contributes to regulation of virulence gene expression in L. monocytogenes. These findings strongly suggest thatσ B contributes to L. monocytogenes gene expression during infection.


1997 ◽  
Vol 23 (5) ◽  
pp. 1075-1085 ◽  
Author(s):  
Andrea A. Milenbachs ◽  
David P. Brown ◽  
Marlena Moors ◽  
Philip Youngman

2009 ◽  
Vol 76 (1) ◽  
pp. 303-309 ◽  
Author(s):  
Vicky G. Kastbjerg ◽  
Marianne Halberg Larsen ◽  
Lone Gram ◽  
Hanne Ingmer

ABSTRACT Listeria monocytogenes is a food-borne human pathogen that causes listeriosis, a relatively rare infection with a high fatality rate. The regulation of virulence gene expression is influenced by several environmental factors, and the aim of the present study was to determine how disinfectants used routinely in the food industry affect the expression of different virulence genes in L. monocytogenes when added at sublethal concentrations. An agar-based assay was developed to screen the effect of disinfectants on virulence gene promoter expression and was validated at the transcriptional level by Northern blot analysis. Eleven disinfectants representing four different groups of active components were evaluated in this study. Disinfectants with the same active ingredients had a similar effect on gene expression. Peroxy and chlorine compounds reduced the expression of the virulence genes, and quaternary ammonium compounds (QAC) induced the expression of the virulence genes. In general, a disinfectant had similar effects on the expression of all four virulence genes examined. Northern blot analyses confirmed the downregulation of prfA and inlA expression by Incimaxx DES (a peroxy compound) and their upregulation by Triquart Super (a QAC) in L. monocytogenes EGD. Hence, sublethal concentrations of disinfectants routinely used in the food industry affect virulence gene expression in the human pathogen L. monocytogenes, and the effect depends on the active components of the disinfectant. From a practical perspective, the study underlines that disinfectants should be used at the lethal concentrations recommended by the manufacturers. Further studies are needed to elucidate whether the changes in virulence gene expression induced by the disinfectants have impact on virulence or other biological properties, such as antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document