scholarly journals Carbon‐source regulation of virulence gene expression in Listeria monocytogenes

1997 ◽  
Vol 23 (5) ◽  
pp. 1075-1085 ◽  
Author(s):  
Andrea A. Milenbachs ◽  
David P. Brown ◽  
Marlena Moors ◽  
Philip Youngman
2009 ◽  
Vol 77 (5) ◽  
pp. 2113-2124 ◽  
Author(s):  
Juliane Ollinger ◽  
Barbara Bowen ◽  
Martin Wiedmann ◽  
Kathryn J. Boor ◽  
Teresa M. Bergholz

ABSTRACT Listeria monocytogenes σB and positive regulatory factor A (PrfA) are pleiotropic transcriptional regulators that coregulate a subset of virulence genes. A positive regulatory role for σB in prfA transcription has been well established; therefore, observations of increased virulence gene expression and hemolytic activity in a ΔsigB strain initially appeared paradoxical. To test the hypothesis that L. monocytogenes σB contributes to a regulatory network critical for appropriate repression as well as induction of virulence gene expression, genome-wide transcript profiling and follow-up quantitative reverse transcriptase PCR (qRT-PCR), reporter fusion, and phenotypic experiments were conducted using L. monocytogenes prfA*, prfA* ΔsigB, ΔprfA, and ΔprfA ΔsigB strains. Genome-wide transcript profiling and qRT-PCR showed that in the presence of active PrfA (PrfA*), σB is responsible for reduced expression of the PrfA regulon. σB-dependent modulation of PrfA regulon expression reduced the cytotoxic effects of a PrfA* strain in HepG2 cells, highlighting the functional importance of regulatory interactions between PrfA and σB. The emerging model of the role of σB in regulating overall PrfA activity includes a switch from transcriptional activation at the P2 prfA promoter (e.g., in extracellular bacteria when PrfA activity is low) to posttranscriptional downregulation of PrfA regulon expression (e.g., in intracellular bacteria when PrfA activity is high).


2006 ◽  
Vol 61 (6) ◽  
pp. 1622-1635 ◽  
Author(s):  
Marianne H. Larsen ◽  
Birgitte H. Kallipolitis ◽  
Janne K. Christiansen ◽  
John E. Olsen ◽  
Hanne Ingmer

2003 ◽  
Vol 185 (19) ◽  
pp. 5722-5734 ◽  
Author(s):  
Mark J. Kazmierczak ◽  
Sharon C. Mithoe ◽  
Kathryn J. Boor ◽  
Martin Wiedmann

ABSTRACT While the stress-responsive alternative sigma factor σB has been identified in different species of Bacillus, Listeria, and Staphylococcus, theσ B regulon has been extensively characterized only in B. subtilis. We combined biocomputing and microarray-based strategies to identify σB-dependent genes in the facultative intracellular pathogen Listeria monocytogenes. Hidden Markov model (HMM)-based searches identified 170 candidateσ B-dependent promoter sequences in the strain EGD-e genome sequence. These data were used to develop a specialized, 208-gene microarray, which included 166 genes downstream of HMM-predicted σB-dependent promoters as well as selected virulence and stress response genes. RNA for the microarray experiments was isolated from both wild-type and ΔsigB null mutant L. monocytogenes cells grown to stationary phase or exposed to osmotic stress (0.5 M KCl). Microarray analyses identified a total of 55 genes with statistically significantσ B-dependent expression under the conditions used in these experiments, with at least 1.5-fold-higher expression in the wild type over the sigB mutant under either stress condition (51 genes showed at least 2.0-fold-higher expression in the wild type). Of the 55 genes exhibiting σB-dependent expression, 54 were preceded by a sequence resembling the σB promoter consensus sequence. Rapid amplification of cDNA ends-PCR was used to confirm the σB-dependent nature of a subset of eight selected promoter regions. Notably, theσ B-dependent L. monocytogenes genes identified through this HMM/microarray strategy included both stress response genes (e.g., gadB, ctc, and the glutathione reductase gene lmo1433) and virulence genes (e.g., inlA, inlB, and bsh). Our data demonstrate that, in addition to regulating expression of genes important for survival under environmental stress conditions, σB also contributes to regulation of virulence gene expression in L. monocytogenes. These findings strongly suggest thatσ B contributes to L. monocytogenes gene expression during infection.


2009 ◽  
Vol 76 (1) ◽  
pp. 303-309 ◽  
Author(s):  
Vicky G. Kastbjerg ◽  
Marianne Halberg Larsen ◽  
Lone Gram ◽  
Hanne Ingmer

ABSTRACT Listeria monocytogenes is a food-borne human pathogen that causes listeriosis, a relatively rare infection with a high fatality rate. The regulation of virulence gene expression is influenced by several environmental factors, and the aim of the present study was to determine how disinfectants used routinely in the food industry affect the expression of different virulence genes in L. monocytogenes when added at sublethal concentrations. An agar-based assay was developed to screen the effect of disinfectants on virulence gene promoter expression and was validated at the transcriptional level by Northern blot analysis. Eleven disinfectants representing four different groups of active components were evaluated in this study. Disinfectants with the same active ingredients had a similar effect on gene expression. Peroxy and chlorine compounds reduced the expression of the virulence genes, and quaternary ammonium compounds (QAC) induced the expression of the virulence genes. In general, a disinfectant had similar effects on the expression of all four virulence genes examined. Northern blot analyses confirmed the downregulation of prfA and inlA expression by Incimaxx DES (a peroxy compound) and their upregulation by Triquart Super (a QAC) in L. monocytogenes EGD. Hence, sublethal concentrations of disinfectants routinely used in the food industry affect virulence gene expression in the human pathogen L. monocytogenes, and the effect depends on the active components of the disinfectant. From a practical perspective, the study underlines that disinfectants should be used at the lethal concentrations recommended by the manufacturers. Further studies are needed to elucidate whether the changes in virulence gene expression induced by the disinfectants have impact on virulence or other biological properties, such as antibiotic resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kyungjin Cho ◽  
Darina Spasova ◽  
Sung-Wook Hong ◽  
Eunju O ◽  
Charles D. Surh ◽  
...  

The intestine harbors a complex community of bacterial species collectively known as commensal microbiota. Specific species of resident bacteria, as known as pathobiont, have pathogenic potential and can induce apparent damage to the host and intestinal inflammation in a certain condition. However, the host immune factors that permit its commensalism under steady state conditions are not clearly understood. Here, we studied the gut fitness of Listeria monocytogenes by using germ-free (GF) mice orally infected with this food-borne pathogen. L. monocytogenes persistently exists in the gut of GF mice without inducing chronic immunopathology. L. monocytogenes at the late phase of infection is not capable of infiltrating through the intestinal barrier. L. monocytogenes established the commensalism through the reversible down regulation of virulence gene expression. CD8+ T cells were found to be sufficient for the commensalism of L. monocytogenes. CD8+ T cells responding to L. monocytogenes contributed to the down-regulation of virulence gene expression. Our data provide important insights into the host-microbe interaction and have implications for developing therapeutics against immune disorders induced by intestinal pathogens or pathobionts.


2021 ◽  
Author(s):  
Moran Brenner ◽  
Sivan Friedman ◽  
Adi Haber ◽  
Ilya Borovok ◽  
Nadejda Sigal ◽  
...  

AbstractListeria monocytogenes (Lm) is a saprophyte and a human intracellular pathogen. Upon invasion into mammalian cells, it senses multiple metabolic and environmental signals that collectively trigger its transition to the pathogenic state. One of these signals is the tripeptide glutathione, which acts as an allosteric activator of Lm’s master virulence regulator, PrfA. While glutathione synthesis by Lm was shown to be critical for PrfA activation and virulence gene expression, it remains unclear how this tripeptide is synthesized under changing environments, especially in light of the observation that Lm is auxotrophic to one of its precursors, cysteine. Here, we show that the ABC transporter TcyKLMN is a cystine/cysteine importer that supplies cysteine for glutathione synthesis, hence mediating the induction of the virulence genes. Further, we demonstrate that this transporter is negatively regulated by three metabolic regulators: CodY, CymR and CysK, which sense and respond to changing concentrations of branched chain amino acids (BCAA) and cysteine. The data indicate that under low concentrations of BCAA, TcyKLMN is up-regulated, driving the production of glutathione by supplying cysteine, thereby facilitating PrfA activation. These findings provide molecular insight into the coupling of Lm metabolism and virulence, connecting BCAA sensing to cysteine uptake and glutathione biosynthesis, as a mechanism that controls virulence gene expression. This study exemplifies how bacterial pathogens sense their intracellular environment and exploit essential metabolites as effectors of virulence.ImportanceBacterial pathogens sense the repertoire of metabolites in the mammalian niche and use this information to shift into a pathogenic state to accomplish successful infection. Glutathione is a virulence-activating signal that is synthesized by L. monocytogenes during infection of mammalian cells. In this study, we show that cysteine uptake via TcyKLMN drives glutathione synthesis and virulence gene expression. The data emphasize the intimate cross-regulation between metabolism and virulence in bacterial pathogens.


Sign in / Sign up

Export Citation Format

Share Document