Chronic Pain – What is it?

2021 ◽  
Vol 2 (5) ◽  
pp. 01-02
Author(s):  
James David Adams

The brain stem and brain are involved in chronic pain processing and sensation. This may involve changes in gene expression through epigenetic alterations [1]. Chronic pain is also a learned experience which involves the brain [2]. In chronic pain, thresholds to pain sensation decrease such that pain may be produced by nonpainful stimuli.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3656-3656 ◽  
Author(s):  
Arun Singavi ◽  
Guangyu Chen ◽  
Nancy Wandersee ◽  
Collin Hubler ◽  
Amanda M Brandow ◽  
...  

Abstract Background:One-third of adults with sickle cell disease (SCD) have daily, chronic pain. Despite the high prevalence of chronic pain in adults with SCD, the mechanism of is not well defined. In other chronic pain disorders, functional MRI (fMRI) demonstrates a re-organization of the brain's connectivity, which may be maladaptive and contribute to the development of a chronic pain syndrome. We performed fMRI in adults with SCD as well as age-matched controls in order to test two hypotheses: 1) functional connectivity is different between adults with SCD and controls, and 2) differences in functional connectivity among adults with SCD are associated with a more severe pain phenotype. Methods:We performed resting-state fMRI in adults with SCD and age-matched controls. Functional connectivity was calculated using two approaches: 1) a seed-voxel approach with the seed being periaqueductal gray (PAG), an area of the brain known to inhibit pain sensation, and 2) an inter-network functional connectivity strength (FCS) analysis, in which seven brain functional networks were selected based on previous brain modularity analysis findings. To calculate the inter-network FCS between networks A and B, the summation of all functional connectivities between two networks are used. Thereafter, the networks that were significantly different in FCS between SCD and controls were used to determine the association between altered functional connectivity and pain phenotype within SCD subjects. Pain phenotype measurements in SCD subjects included a day-of-study pain score, a 15-day diary to document daily pain and opioid use, McGill pain and Pain DETECT questionnaires, and quantitative sensory testing in response to mechanical, cold, and heat stimuli. Statistical analyses were performed using FSL and Matlab software. Results: A total of 27 adults were examined, including 13 with SCD (9 HbSS, 4 HbSC) and 14 age-matched controls. Seed-based functional connectivity analyses revealed significantly decreased connectivity in SCD as compared to controls between PAG and the regions involved in pain, sensation, salience, emotion, learning, and memory (temporal gyrus, anterior/posterior insula, parahippocampal gyrus, fusiform gyrus, precunes, posterior cingulate gyrus, anterior cingulate, subcallosal gyrus, paracentral gyrus, inferior/superior parietal lobe, inferior frontal gyrus and superior temporal gyrus) (P<0.001, t-test with AlphaSim correction). Furthermore, inter-network analyses show significantly decreased FCS in SCD as compared to controls among networks involved in salience, emotion, learning, and memory (between the salience network and the striatum network, between the salience network and the temporal network, and within both the salience network and the hippocampus network) (P<0.001, t-test). When these inter-network differences in FCS between SCD subjects and controls were examined within SCD subjects to determine the association with clinical phenotype, significant associations were found with age (rs=0.63, P<0.024, Spearman correlation analysis), SCD genotype (SS vs SC) (r2=0.43, P<0.016, linear regression analysis), and number of diary days with pain score >5 (r2=0.5, P<0.011, linear regression analysis). Conclusions: In adults with SCD compared to controls, there were differences in inter-network FCS, including the salience, striatum, temporal, and hippocampus networks, which are crucial networks for salience, emotion, learning, and memory. When these inter-network FCS differences were examined within adults with SCD, significant associations were found with age, SCD genotype and number of pain days. Taken together, these data suggest that altered connectivity in the brain of adults with SCD contributes to the development of a chronic pain syndrome. These changes in functional connectivity on fMRI could be used as a biomarker to determine the efficacy of interventions targeted to decrease chronic pain. Disclosures Field: NKT Therapeutics: Research Funding; Astellas Pharmaceuticals: Research Funding.


2005 ◽  
Vol 10 (suppl a) ◽  
pp. 7A-14A ◽  
Author(s):  
ME Lynch

Modern pharmacology of cannabinoids began in 1964 with the isolation and partial synthesis of delta-9-tetrahydrocannabinol, the main psychoactive agent in herbal cannabis. Since then, potent antinociceptive and antihyperalgesic effects of cannabinoid agonists in animal models of acute and chronic pain; the presence of cannabinoid receptors in pain-processing areas of the brain, spinal cord and periphery; and evidence supporting endogenous modulation of pain systems by cannabinoids has provided support that cannabinoids exhibit significant potential as analgesics. The present article presents an overview of the preclinical science.


2021 ◽  
pp. 01-09
Author(s):  
Mehnaz Gitay ◽  
Kausar Saboohi ◽  
Bushra Chaudhary ◽  
Samina Bano

Since the discovery that antidepressants work in part by potentiating the actions of 5-HT within the serotonergic system the effects these drugs elicit on the serotonin transporter (SERT) protein have been an area of active research. The aim of the present study is to understand the mechanism of action of tianeptine and sertraline in relation to its effects on the expression of SERT gene and SERT protein in the brain stem of stressed rats. Albino Wistar rats were divided into two groups (n=12) i.e. saline and drug. Each group was further divided into two equal groups, stressed (Forced Swim Test-FST) and unstressed. Tianeptine and sertraline were administered to rats orally for 4 weeks prior to subjecting them to forced swim test and decapitation. Tianeptine increased the expression of SERT gene though the protein is reduced in the brain stem in stress. On the contrary sertraline decreased the expression of SERT gene but increased the protein in the brain stem. The increase in swimming time in FST by both the drugs indicates stress alleviating effects. It can be concluded that Tianeptine prevents stress induced changes through its effect on the serotonergic system, including SERT mRNA and protein. Sertraline complies to the reuptake inhibition property by reducing SERT gene expression. Results are discussed specifically, how changes in SERT expression following chronic antidepressant treatment may contribute to the therapeutic benefits of antidepressants. Keywords: Antidepressants; Serotonin transporters; Stress; Serotonergic system; SERT gene expression


Author(s):  
Shams M. Ghoneim ◽  
Frank M. Faraci ◽  
Gary L. Baumbach

The area postrema is a circumventricular organ in the brain stem and is one of the regions in the brain that lacks a fully functional blood-brain barrier. Recently, we found that disruption of the microcirculation during acute hypertension is greater in area postrema than in the adjacent brain stem. In contrast, hyperosmolar disruption of the microcirculation is greater in brain stem. The objective of this study was to compare ultrastructural characteristics of the microcirculation in area postrema and adjacent brain stem.We studied 5 Sprague-Dawley rats. Horseradish peroxidase was injected intravenously and allowed to circulate for 1, 5 or 15 minutes. Following perfusion of the upper body with 2.25% glutaraldehyde in 0.1 M sodium cacodylate, the brain stem was removed, embedded in agar, and chopped into 50-70 μm sections with a TC-Sorvall tissue chopper. Sections of brain stem were incubated for 1 hour in a solution of 3,3' diaminobenzidine tetrahydrochloride (0.05%) in 0.05M Tris buffer with 1% H2O2.


1993 ◽  
Vol 4 (3) ◽  
pp. 457-468 ◽  
Author(s):  
Dennis Y. Wen ◽  
Roberto C. Heros

1979 ◽  
Vol 90 (3) ◽  
pp. 385-393 ◽  
Author(s):  
José Borrell ◽  
Flavio Piva ◽  
Luciano Martini

ABSTRACT Drugs able to mimic or to antagonize the action of catecholamines have been implanted bilaterally into the basomedial region of the amygdala of adult castrated female rats. The animals were killed at different intervals after the implantation of the different drugs, and serum levels of LH and FSH were measured by radioimmunoassay. The results have shown that the intra-amygdalar implantation of the alpha-adrenergic blocker phenoxybenzamine induces a significant increase of the release both of LH and FSH. The implantation of the beta-adrenergic blocker propranolol brings about a rise of LH only. The dopamine receptor blocker pimozide stimulates the release of LH and exerts a biphasic effect (stimulation followed by inhibition) of FSH secretion. The alpha-receptor stimulant clonidine and the dopaminergic drug 2-Br-alpha-ergocryptine were without significant effects. From these observations it is suggested that the adrenergic signals reaching the basomedial area of the amygdala (possibly from the brain stem) may be involved in the modulation of gonadotrophin secretion.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1805-P
Author(s):  
WEIKANG CAI ◽  
THIAGO M. BATISTA ◽  
RUBEN GARCIA MARTIN ◽  
ALFRED RAMIREZ ◽  
MASAHIRO KONISHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document