Partitioning Sources of Ecosystem and Soil Respiration in an Alpine Meadow of Tibet Plateau Using Regression Method

2014 ◽  
Vol 62 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Gang Fu ◽  
Xian-Zhou Zhang ◽  
Yu-Ting Zhou ◽  
Cheng-Qun Yu ◽  
Zhen-Xi Shen
2019 ◽  
Author(s):  
Junfeng Wang ◽  
Qingbai Wu ◽  
Ziqiang Yuan ◽  
Hojeong Kang

Abstract. Freezing and thawing action of the active layer plays a significant role in soil respiration (Rs) in permafrost regions. However, little is known about how the freeze-thaw process regulates the Rs dynamics in different stages for the alpine meadow underlain by permafrost on the Qinghai-Tibet Plateau (QTP). We conducted continuous in-situ measurements of Rs and freeze-thaw process of the active layer at an alpine meadow site in the Beiluhe permafrost region of QTP to determine the regulatory mechanisms of the different freeze-thaw stages of the active layer on the Rs. We found that the freezing and thawing process of active layer modified the Rs dynamics differently in different freeze-thaw stages. The mean Rs ranged from 0.56 to 1.75 μmol/m2s across the stages, with the lowest value in the SW stage and highest value in the ST stage; and Q10 among the different freeze-thaw stages changed greatly, with maximum (4.9) in the WC stage and minimum (1.7) in the SW stage. Patterns of Rs among the ST, AF, WC, and SW stages differed, and the corresponding contribution percentages of cumulative Rs to annual total Rs were 61.54, 8.89, 18.35, and 11.2 %, respectively. Soil temperature (Ts) was the most important driver of Rs regardless of soil water status in all stages. Our results suggest that as the climate warming and permafrost degradation continue, great changes in freeze-thaw process patterns may trigger more Rs emissions from this ecosystem because of prolonged ST stage.


2020 ◽  
Vol 14 (9) ◽  
pp. 2835-2848
Author(s):  
Junfeng Wang ◽  
Qingbai Wu ◽  
Ziqiang Yuan ◽  
Hojeong Kang

Abstract. Freezing and thawing action of the active layer plays a significant role in soil respiration (Rs) in permafrost regions. However, little is known about how the freeze–thaw processes affect the Rs dynamics in different stages of the alpine meadow underlain by permafrost in the Qinghai–Tibet Plateau (QTP). We conducted continuous in situ measurements of Rs and freeze–thaw processes of the active layer at an alpine meadow site in the Beiluhe permafrost region of the QTP and divided the freeze–thaw processes into four different stages in a complete freeze–thaw cycle, comprising the summer thawing (ST) stage, autumn freezing (AF) stage, winter cooling (WC) stage, and spring warming (SW) stage. We found that the freeze–thaw processes have various effects on the Rs dynamics in different freeze–thaw stages. The mean Rs ranged from 0.12 to 3.18 µmol m−2 s−1 across the stages, with the lowest value in WC and highest value in ST. Q10 among the different freeze–thaw stages changed greatly, with the maximum (4.91±0.35) in WC and minimum (0.33±0.21) in AF. Patterns of Rs among the ST, AF, WC, and SW stages differed, and the corresponding contribution percentages of cumulative Rs to total Rs of a complete freeze–thaw cycle (1692.98±51.43 g CO2 m−2) were 61.32±0.32 %, 8.89±0.18 %, 18.43±0.11 %, and 11.29±0.11 %, respectively. Soil temperature (Ts) was the most important driver of Rs regardless of soil water status in all stages. Our results suggest that as climate change and permafrost degradation continue, great changes in freeze–thaw process patterns may trigger more Rs emissions from this ecosystem because of a prolonged ST stage.


CATENA ◽  
2020 ◽  
Vol 194 ◽  
pp. 104750
Author(s):  
Jinlan Wang ◽  
Yuzhen Liu ◽  
Wenxia Cao ◽  
Wen Li ◽  
Xiaojun Wang ◽  
...  

2014 ◽  
Vol 6 (2) ◽  
pp. 3003-3023 ◽  
Author(s):  
F. Peng ◽  
Y. Quangang ◽  
X. Xue ◽  
J. Guo ◽  
T. Wang

Abstract. Land degradation induced by rodent activities is extensively occurred in alpine meadow ecosystem in the Qinghai–Tibet Plateau that would affect the ecosystem carbon (C) balance. We conducted a field experiment with six levels of land degradation (D1–D6, degradation aggravates from D1 to D6) to investigate the effects of land degradation on ecosystem C fluxes. Soil respiration (Rs), net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) were measured from June to September 2012. Soil respiration, ER, GEP and above-ground biomass (AGB) was significantly higher in slightly degraded (D3 and D6) than in severely degraded land (D1, D2, D4 and D5). Positive averages of NEE in the growing season indicate that alpine meadow ecosystem is a weak C sink during the growing season. Net ecosystem exchange had no significant difference among different degraded levels, but the average NEE in slightly degraded group was 33.6% higher than in severely degraded group. Soil respiration, ER and NEE were positively correlated with AGB whereas soil organic C, labile soil C, total nitrogen (N) and inorganic nitrogen were associated with root biomass (RB). Our results highlight the decline of vegetation C storage of alpine meadow ecosystem with increasing number of rodent holes and suggest the control of AGB on ecosystem C fluxes, and the control of RB on soil C and N with development of land degradation.


Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 303-310 ◽  
Author(s):  
F. Peng ◽  
Y. Quangang ◽  
X. Xue ◽  
J. Guo ◽  
T. Wang

Abstract. The widespread land degradation in an alpine meadow ecosystem would affect ecosystem carbon (C) balance. Biomass, soil chemical properties and carbon dioxide (CO2) of six levels of degraded lands (D1–D6, according to the number of rodent holes and coverage) were investigated to examine the effects of rodent-induced land degradation on an alpine meadow ecosystem. Soil organic carbon (SOC), labile soil carbon (LC), total nitrogen (TN) and inorganic nitrogen (N) were obtained by chemical analysis. Soil respiration (Rs), net ecosystem exchange (NEE) and ecosystem respiration (ER) were measured by a Li-Cor 6400XT. Gross ecosystem production (GEP) was the sum of NEE and ER. Aboveground biomass (AGB) was based on a linear regression with coverage and plant height as independent variables. Root biomass (RB) was obtained by using a core method. Soil respiration, ER, GEP and AGB were significantly higher in slightly degraded (D3 and D6, group I) than in severely degraded land (D1, D2, D4 and D5, group II). Positive values of NEE average indicate that the alpine meadow ecosystem is a weak C sink during the growing season. The only significant difference was in ER among different degradation levels. Rs, ER and GEP were 38.2, 44.3 and 46.5% higher in group I than in group II, respectively. Similar difference of ER and GEP between the two groups resulted in an insignificant difference of NEE. Positive correlations of AGB with ER, NEE and GEP, and relatively small AGB and lower CO2 fluxes in group II, suggest the control of AGB on ecosystem CO2 fluxes. Correlations of RB with SOC, LC, TN and inorganic N indicate the regulation of RB on soil C and N with increasing number of rodent holes in an alpine meadow ecosystem in the permafrost region of the Qinghai–Tibet Plateau (QTP).


2021 ◽  
Vol 13 (4) ◽  
pp. 669
Author(s):  
Hanchen Duan ◽  
Xian Xue ◽  
Tao Wang ◽  
Wenping Kang ◽  
Jie Liao ◽  
...  

Alpine meadow and alpine steppe are the two most widely distributed nonzonal vegetation types in the Qinghai-Tibet Plateau. In the context of global climate change, the differences in spatial-temporal variation trends and their responses to climate change are discussed. It is of great significance to reveal the response of the Qinghai-Tibet Plateau to global climate change and the construction of ecological security barriers. This study takes alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau as the research objects. The normalized difference vegetation index (NDVI) data and meteorological data were used as the data sources between 2000 and 2018. By using the mean value method, threshold method, trend analysis method and correlation analysis method, the spatial and temporal variation trends in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau were compared and analyzed, and their differences in the responses to climate change were discussed. The results showed the following: (1) The growing season length of alpine meadow was 145~289 d, while that of alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau was 161~273 d, and their growing season lengths were significantly shorter than that of alpine meadow. (2) The annual variation trends of the growing season NDVI for the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau increased obviously, but their fluctuation range and change rate were significantly different. (3) The overall vegetation improvement in the Qinghai-Tibet Plateau was primarily dominated by alpine steppe and alpine meadow, while the degradation was primarily dominated by alpine meadow. (4) The responses between the growing season NDVI and climatic factors in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau had great spatial heterogeneity in the Qinghai-Tibet Plateau. These findings provide evidence towards understanding the characteristics of the different vegetation types in the Qinghai-Tibet Plateau and their spatial differences in response to climate change.


Sign in / Sign up

Export Citation Format

Share Document