The Impact of Overstory Species and Soil Properties on the Growth of Planted Silver Fir Abies alba in the Karkonosze Mountains, Poland

2021 ◽  
Vol 69 (1) ◽  
Author(s):  
Dorota Dobrowolska ◽  
Bogdan Pawlak ◽  
Grażyna Olszowska
Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 640
Author(s):  
Cristian Gheorghe Sidor ◽  
Radu Vlad ◽  
Ionel Popa ◽  
Anca Semeniuc ◽  
Ecaterina Apostol ◽  
...  

The research aims to evaluate the impact of local industrial pollution on radial growth in affected Norway spruce (Picea abies (L.) Karst.) and silver fir (Abies alba Mill.) stands in the Tarnița study area in Suceava. For northeastern Romania, the Tarnița mining operation constituted a hotspot of industrial pollution. The primary processing of non-ferrous ores containing heavy metals in the form of complex sulfides was the main cause of pollution in the Tarnița region from 1968 to 1990. Air pollution of Tarnița induced substantial tree growth reduction from 1978 to 1990, causing a decline in tree health and vitality. Growth decline in stands located over 6 km from the pollution source was weaker or absent. Spruce trees were much less affected by the phenomenon of local pollution than fir trees. We analyzed the dynamics of resilience indices and average radial growth indices and found that the period in which the trees suffered the most from local pollution was between 1978 and 1984. Growth recovery of the intensively polluted stand was observed after the 1990s when the environmental condition improved because of a significant reduction in air pollution.


2020 ◽  
Vol 47 (11) ◽  
pp. 1007
Author(s):  
Alena Konôpková ◽  
Eva Pšidová ◽  
Daniel Kurjak ◽  
Srđan Stojnić ◽  
Peter Petrík ◽  
...  

Understanding of the intraspecific variability in the physiological stress response of trees may enable to mitigate the impact of climate change on forest ecosystems in the future. We studied the photosynthetic performance of five silver fir (Abies alba Mill.) provenances originating from climatically distinct localities. The study was performed in the trial plot of the silver fir provenance experiment IUFRO 2005 on two dates: in the early summer and in the late summer. Heat waves and a decrease in water availability occurred between the two measurement dates, allowing us to study the response of the provenances to suboptimal growing conditions. The provenances were evaluated at the level of PSII photochemistry and CO2 assimilation by measuring photosynthesis-related pigment content, chlorophyll a fluorescence, and gas exchange parameters. Significant climatic clines were confirmed: the photosynthetic performance before and after the stress period increased with the increasing altitude and precipitation at the site of origin. In contrast, photosynthetic performance declined with the increasing temperature and Ellenberg’s quotient of the origin site. We concluded that provenances originating from high altitudes, corresponding well with more humid and colder conditions in Central Europe, showed the greatest photosynthetic performance and were less responsive to moderate heat and drought. This documents inter-population variation in physiological traits, which needs to be considered in setting rules and recommendations for the transfer of forest reproductive materials.


2015 ◽  
Vol 337 ◽  
pp. 77-87 ◽  
Author(s):  
Milan Kobal ◽  
Helena Grčman ◽  
Marko Zupan ◽  
Tom Levanič ◽  
Primož Simončič ◽  
...  

2012 ◽  
Vol 71 (6) ◽  
pp. 683-695 ◽  
Author(s):  
Marie Nourtier ◽  
André Chanzy ◽  
Maxime Cailleret ◽  
Xie Yingge ◽  
Roland Huc ◽  
...  

Ecosystems ◽  
2021 ◽  
Author(s):  
Thomas Asbeck ◽  
Daniel Kozák ◽  
Andreea P. Spînu ◽  
Martin Mikoláš ◽  
Veronika Zemlerová ◽  
...  

AbstractThe impact of forest management on biodiversity is difficult to scrutinize along gradients of management. A step towards analyzing the impact of forest management on biodiversity is comparisons between managed and primary forests. The standardized typology of tree-related microhabitats (TreMs) is a multi-taxon indicator used to quantify forest biodiversity. We aim to analyze the influence of environmental factors on the occurrence of groups of TreMs by comparing primary and managed forests. We collected data for the managed forests in the Black Forest (Germany) and for the primary forests in the Western (Slovakia) and Southern Carpathians (Romania). To model the richness and the different groups of TreMs per tree, we used generalized linear mixed models with diameter at breast height (DBH), altitude, slope and aspect as predictors for European beech (Fagus sylvatica (L.)), Norway spruce (Picea abies (L.)) and silver fir (Abies alba (Mill.)) in primary and managed temperate mountain forests. We found congruent results for overall richness and the vast majority of TreM groups. Trees in primary forests hosted a greater richness of all and specific types of TreMs than individuals in managed forests. The main drivers of TreMs are DBH and altitude, while slope and aspect play a minor role. We recommend forest and nature conservation managers to focus: 1) on the conservation of remaining primary forests and 2) approaches of biodiversity-oriented forest management on the selection of high-quality habitat trees that already provide a high number of TreMs in managed forests based on the comparison with primary forests.


2021 ◽  
Author(s):  
Elisabet Martínez-Sancho ◽  
Christian Rellstab ◽  
Frédéric Guillaume ◽  
Christof Bigler ◽  
Patrick Fonti ◽  
...  

<p>Warmer climate and more frequent extreme droughts will pose major threats to forest ecosystems. Persistence of intra-specific populations of tree species will depend on their tolerance and adaptive capacities to forthcoming climate conditions. However, past demography processes due to post-glacial recolonization can also contribute to the genetic-based differences in growth responses among provenances. In this study, we investigated the impact of climatic conditions on growth traits among 18 provenances of silver fir (<em>Abies alba </em>Mill.) from west, south and eastern Europe growing in two provenance trials established in Switzerland in 1980s. We further assessed whether the differences in growth-related traits across provenances were linked to their genetic differences due to recolonization history and natural selection processes.</p><p>In total 250 individuals were measured and cored for dendrochronological analyses, and different growth-related traits were calculated: i) total tree height and diameter at breast height (DBH), ii) growth-climate relationships using correlations between tree-ring width and monthly climate parameters as well as levels of autocorrelation, and iii) short-term responses to extreme drought using resilience components (resilience, resistance, and recovery) to the severe drought that occurred in the study area in 2003. We also genotyped all the individuals in 150 putatively neutral single nucleotide polymorphisms to define the neutral genetic structure of the population, the neutral genetic differentiation among provenances (<em>F<sub>ST</sub></em>) and the genetic variation among provenances in relation to the total genetic variance in a trait (<em>Q<sub>ST</sub></em>). Signs of natural selection were assessed by two approaches: i) Pearson correlations between the least-square means of provenances of the traits and bioclimatic variables from the seed origin, and ii) <em>Q<sub>ST</sub>-F<sub>ST</sub></em> comparison.</p><p>The studied provenances grouped into three longitudinal clusters reassembling the genetic lineages of refugia from the last glacial maximum: the provenance of the Pyrenees as a sole member of the westernmost cluster, the Central European provenances representing the central cluster and all the eastern European provenances forming the eastern cluster. These three lineages showed differences in growth performance traits (height and DBH), with the trees from the eastern cluster being the top performers. The Pyrenees cluster showed significantly lower recovery and resilience to the extreme drought of 2003 as well as lower values of growth autocorrelation. A <em>Q<sub>ST</sub>-F<sub>ST</sub></em> and correlation analyses with climate of provenance origin suggest that the differences among provenances found in some traits result from natural selection. Our study suggests that post-glacial re-colonization and natural selection are the major drivers explaining the intra-specific variability in growth of silver fir across Europe. These findings provide insights to support assisted gene flow to ensure the persistence of the species in European forests.</p>


IAWA Journal ◽  
2019 ◽  
Vol 40 (2) ◽  
pp. 259-S3 ◽  
Author(s):  
Serena Antonucci ◽  
Sergio Rossi ◽  
Fabio Lombardi ◽  
Marco Marchetti ◽  
Roberto Tognetti

ABSTRACTXylem phenology has been widely recognised as an ecological indicator of the impact of environmental changes on forest ecosystems, especially at the edge of a species distribution. We investigated xylem phenology of silver fir (Abies alba Mill.) in three sites in Italy, between the 38th and 46th parallels. The phases of xylem phenology were assessed weekly on wood microcores collected from March to November 2015 to calculate timing and duration of xylem cell production. The effect of temperature and precipitation on xylem phenology were sequentially included in stepwise regressions and used to predict the duration of each phenological phase under three future climatic scenarios at different concentrations of greenhouse gases (RCP 2.6; 4. 5; 8. 5). A growing season of 163 days was detected in the southern site that was longer compared to the central (132 days) and northern (120 days) sites. A longer duration of xylogenesis was mostly related to a delayed completion of xylem differentiation in autumn rather than an earlier onset of cambium reactivation in spring. Overall, 67–76% of the duration of phenological phases was controlled by growing season precipitation, while 24 –33% was influenced by minimum temperature. Inclusion of both the above factors in the modelling exercise simulated a lengthening of the silver fir growing season during the 21st century. A longer duration of xylogenesis was envisaged in the scenario RCP 8. 5, especially in the central site. Population and climate gradients need to be considered when addressing phenological shifts and growth dynamics of silver fir in Mediterranean mountains.


2014 ◽  
Vol 58 (3) ◽  
pp. 385-407 ◽  
Author(s):  
Maria Mazur

The paper presents the spatial, age and size structures of individuals in silver fir population. The studies were conducted in fir forest and Carpathian beechwood. It was found that fir trees were distributed randomly, whereas seedlings, new growth and up-growth had clumped distribution. The growth and development of individuals in aggregations and outside them were analysed. The stress was put on the impact of spatial structure on the process of population regeneration. Age pyramid was flat with its base very wide. About 40% of trees in the population were dead.


2017 ◽  
Vol 78 (2) ◽  
pp. 149-158
Author(s):  
Ihor Kozak ◽  
Barbara Typiak ◽  
Taras Parpan ◽  
Hanna Kozak

Abstract This study has been carried out in the Polish Roztoczański National Park and the Ukrainian Ravs’ke Roztochia Regional Landscape Park, both of which are part of the Roztoche region. In each of these two locations, representative study plots were established in beech (Fagus sylvatica L.) stands occupying sites with similar environmental conditions. A longterm prognosis for the dynamics of the chosen beech stands were generated using the computer model FORKOME. The model was used to forecast stand developments for four climatic scenarios (warm-humid, warm-dry, cold-humid, cold-dry) covering a time span of 500 years. Our simulation results indicate that in the control scenario, beech stands were dominating and cyclical changes between beech and Silver fir (Abies alba Mill.) may occur. In the scenarios with assumed climate warming, a decline of fir biomass and an increase of beech biomass, as compared to the control conditions, was noticed. In the scenario with assumed climate cooling, fir biomass increased for the duration of the investigated time span. To conclude, the application of the FORKOME model was found to be a useful tool for analyzing potential scenarios of long-term dynamics of beech stands in the Roztoche region in Poland and Ukraine.


Sign in / Sign up

Export Citation Format

Share Document