scholarly journals Progress in Metal-supported Solid Oxide Fuel Cells

Ceramist ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 356-367
Author(s):  
Young-Wan Ju

Solid oxide fuel cells (SOFCs) have been attracting much attention as alternative energy conversion devices due to their high energy conversion efficiency and fuel flexibility. In current SOFCs, Ni-based Cermet anode, solid oxide electrolyte and ceramic cathode have been used. Since all components are ceramic-based materials, there is a problem in that mechanical strength and durability against thermal shock. In order to solve this problem, metal-supported solid oxide fuel cells have designed. Metal-supported solid oxide fuel cells provide significant advantages such as low materials cost, ruggedness, and tolerance to rapid thermal cycling and redox cycling. This paper review the types of metal supports used in metal-based solid oxide fuel cells and the advantages and disadvantages of each metal support.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1280
Author(s):  
Mohsen Fallah Vostakola ◽  
Bahman Amini Horri

Solid oxide fuel cells (SOFCs) have been considered as promising candidates to tackle the need for sustainable and efficient energy conversion devices. However, the current operating temperature of SOFCs poses critical challenges relating to the costs of fabrication and materials selection. To overcome these issues, many attempts have been made by the SOFC research and manufacturing communities for lowering the operating temperature to intermediate ranges (600–800 °C) and even lower temperatures (below 600 °C). Despite the interesting success and technical advantages obtained with the low-temperature SOFC, on the other hand, the cell operation at low temperature could noticeably increase the electrolyte ohmic loss and the polarization losses of the electrode that cause a decrease in the overall cell performance and energy conversion efficiency. In addition, the electrolyte ionic conductivity exponentially decreases with a decrease in operating temperature based on the Arrhenius conduction equation for semiconductors. To address these challenges, a variety of materials and fabrication methods have been developed in the past few years which are the subject of this critical review. Therefore, this paper focuses on the recent advances in the development of new low-temperature SOFCs materials, especially low-temperature electrolytes and electrodes with improved electrochemical properties, as well as summarizing the matching current collectors and sealants for the low-temperature region. Different strategies for improving the cell efficiency, the impact of operating variables on the performance of SOFCs, and the available choice of stack designs, as well as the costing factors, operational limits, and performance prospects, have been briefly summarized in this work.


Author(s):  
Helgi S. Fridriksson ◽  
Bengt Sunde´n ◽  
Jinliang Yuan ◽  
Martin Andersson

Solid oxide fuel cells (SOFCs) have the attractive feature to be able to make use of hydrocarbon fuels in their operation by reforming the fuel into pure hydrogen, either internally or externally. This can open up for a smoother transition from the existing hydro-carbon economy toward a more renewable hydrogen economy. Since both SOFCs and internal combustion (IC) engines can make use of hydrocarbon fuels, it is of interest to examine the major differences in their utilization of the hydrocarbons and investigate how this type of fuel contributes to the power output of the respective systems. Thereby, various advantages and disadvantages of their reactions are raised. It was shown that even though there are fundamental differences between SOFCs and IC engines, both types face similar problems in their designs. These problems mostly include material design and operation management, but even problems related to the chemical reactions, e.g., carbon deposition for SOFCs and pollutant formation for IC engines.


2014 ◽  
Vol 976 ◽  
pp. 70-74
Author(s):  
Iván L. Samperio-Gómez ◽  
Claudia A. Cortés-Escobedo ◽  
A.M. Bolarín-Miró ◽  
Félix Sánchez de Jesús

Several methods for processing tubular anodes for solid oxide fuel cells have been developed, but many of them are expensive and sophisticated, therefore, there is a great interest in researching the use of a simple process to produce them. In this paper, the results of using slip casting for processing minitubes of NiO-8YSZ with the dimensions of 100x5x1 mm are presented. This is a versatile method for obtaining complex geometries with a suitable surface finish and dimensional precision at low cost compared with ceramic processing which uses high energy consumption and/or has high startup costs. In order to carry out this study, an aqueous slurry of an oxide mixture of NiO-8YSZ with poly-etilenglycol as a dispersant agent was used. The modification of the ratio of water:ceramic powders, the composition NiO:x8YSZ (30, 50 and 70 in wt.) and the casting time (3 to 30 min) were also applied. The minitubes obtained were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectroscopy of dispersive energy (EDS). The results show that slip casting is an appropriate method to obtain NiO-8YSZ minitubes. Minitubes of varying composition (30, 50 and 70% in wt. of NiO) with dimensions of 100x5x1 mm were obtained showing an excellent porosity (higher than 96% in v/v) and a homogeneous distribution of NiO and 8YSZ particles. XRD analysis confirms the presence of starting oxides before and after the casting process.


Tribology ◽  
2006 ◽  
Author(s):  
Christopher K. Green ◽  
Jeffrey L. Streator ◽  
Comas Haynes

Fuel cells represent a promising energy alternative to the traditional combustion of fossil fuels. In particular, solid oxide fuel cells (SOFCs) have been of interest due to their high energy densities and potential for stationary power applications. One of the key obstacles precluding the maturation and commercialization of planar SOFCs has been the lack of a robust sealant. This paper presents a computational model of leakage with the utilization of mica-based compressive seals. A finite element model is developed to ascertain the macroscopic stresses and deformations in the interface. In conjunction with the finite element model is a microscale contact mechanics model that accounts for the role of surface roughness in determining the mean interfacial gap at the interface. An averaged Reynolds equation derived from mixed lubrication theory is applied to model the leakage flow across the rough, annular interface. The composite model is applied as a predictive tool for assessing how certain physical parameters (i.e., seal material composition, compressive applied stress, surface finish, and interfacial conformity) affect seal leakage rates.


Sign in / Sign up

Export Citation Format

Share Document